AD-A216 040

|

AUTONOMOUS FACE RECOGNITION MACHINE

USING A FOURIER FEATURE SET
THESIS

Barbara C. Robb, B.S.
Captain, USAF

AFIT/GE/ENG/89D~44

DEPARTMENT OF THE AIR FORCE
- AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

. DISTIIBUTION STATEMENT A

[: Approvsd for public ralease;
Diatribution Unlimited

Wright-Patterson Air Force Base, Ohio

89 12 14 043

AFIT/GE/ENG/89D-44

AUTONOMOUS FACE RECOGNITION MACHINE

USING A FOURIER FEATURE SET

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

Barbara C. Robb, B.S.

Captain, USAF

December, 1989

Approved for public release; distribution unlimited

Acknowledgements

To my husband Roger. You were brave to marry an AFIT
student, and your love and encouragement kept me going.
Thank you.

To my advisor, Dr. Matthew Kabrisky. Thank you for your
unending patience and constant enthusiasm. Never has
learning been so much fun.

Thank you to the other members of my committee, Major
Steven Rogers and Dr. Frank Brown, for your comments and
support.

Thank you Dan Zambon for your support in the lab. You
werfr ~lways there to help me learn the systems and use the
1ab to do my research.

A special thanks to my fellow students and other
individuals at AFIT for letting me take your pictures so I

could gather all of the faces I needed for my data base.

Acgession For

e
NTIS GRAXI 4
DTIC TAB 0
Unannounoced 0
Justifieation . |
By
Distribution/
¥ .\|_Avatlability Codes
1% Avail andjor

=/ |Dist Special

i ﬁ/ | l

Table of Contents

Acknowledgements . . « ¢ ¢ ¢ ¢ ¢ 4 v 4 e e a0

List of Figures . . . ¢« ¢ ¢« v v ¢« ¢ ¢ « « «

List of Tables « ¢« + « « ¢ ¢ o « « W

Abstract

I. Introduction ¢ .« ¢« ¢ 4 ¢ 0 ..,
General Issue . . . « .« ¢« ¢« ¢« + « .« o
Background . . ¢ e e e e e e e

Routh's Theory « . .
Russel's AFRM
Smith's Improvements . e
Lambert's Enhancements . . . e
Sander's Further Enhancements
Problem Statement«
Research Objectlves/Methodology . .
Assumptions . , e
Standards
Scope/Lzmltatlons .

.
.

. . L]

* & o e

Equipment

Support . o o e e « » v » .

Summa ry . - L] L] . L] - L] [] L] - L] . L]
II. Methodology . . . « ¢ ¢« ¢ ¢ ¢« ¢« « o« o« + o

Introduction

Feature Set

Justification of Method Selected :

Research Methodology . .
Increasing Data Base Size
Multiple Looks « « . .« . .
Documentation . . .

Justification of Method Selected :

Research Methodology . .
Summary . L . L] . L] . . » L] . L] L]

III. Implementation

Introduction « . .+ « ¢ .«
Feature Set . . . « e e e e e e
Increasing Data Base Size
Multiple Looks « « . .
Documentation
SUMMALY « & « o« s o o o o o s o

iii

Page

ii

vi

vii

|

15
16
16
17
20
20
21
21
22
24

25

25
25
26
26
26
27

Appendix A:

ResSUlts . . v ¢ v ¢ @ v v e e e W

Introduction . . .,
Feature Set
Sander's Results . . .
Retest of Sander Data
Test of Modified FACEDF
Face Location Problems
Test of FACEFT
Increasing Data Base Size .
Multiple Looks
Documentation
Summary . .« « ¢ o« 2 oe e . o

s s & & s & FIs =2 s .

CONCIUSIONS +« ¢ ¢« o « « o« o« « o &

Introduction
Feature Set . . . , . . .
Increasing Data Base Size .
Multiple Looks
Documentation . . . « « .
SUMMALY « « « o » « « o o &
Recommendations for Further

:U’ e ¢ @

User!s Manual

a » * » a »
. a o A »

s e s & » 8

. LI} a & »

- . e . s e 0+ @
.

. - L] s s » . » L
s . .
. - . s e

- & -

] . e o s
* e . . »

. 3 ¢ » - .
* o - e &« €

28

28
28
28
30
30
37
37
40
41
42
42

43

43
43
44
44
45
45
45

47
64

Appendix B: Program Changes
Appendix C: Software Documentation . .
Appendix D: FACEDFT Source Listing . .
Appendix E: FACEFT . . « « ¢ « « « « &
Bibliography . . « . + ¢ v « « « o « « &

Vita - - L] - . e

List of Fiquyres

Figure

1. Russel's Image Processing

2. Smith's Image Processing . . .
3. lLambert's Image Processing

4. Sander's Image Processing . .

Table Page
1. Comparison of FACE and FACEDFT « 29

2. Comparison of FACEDFT and Individual
Windows . L] - L] . . » L) L . L - . * - - - 3 1

3. Changed FACEDFT . . « ¢ ¢ ¢ ¢ & « o o o s o o o & 32
4. Tabulated Results ¢ ¢ & v ¢« « « & « « 35

5. FACEFT . . & ¢« ¢« v ¢ o « s « o o o o « & « « « « 138

vi

AFIT/GE/ENG/89D-44

Abstract

‘;xThis thesis demonstrates Fourier coefficients as a
reliable feature set for face recognition, using the
Autonomous Face Recognition Machine developed at AFIT over
the past several years~§Routh, 1985; Russel, 1985; Snmith,
1986; Lambert, 1987;-Sander, 1988).

“ The Fourier transform portion of the system was examined
and improved. The code was made more efficient. Two
Fourier transform routines (a fast Fourier transform and a
classical Fourier transform) were tested and compared. A
voting scheme was incorporated for examining multiple looks
at test faces. To further demonstrate performance, the
number of faces in the data base was doubled.

Recognition scores of up to 87% were achieved, compared
to 63% for Sander's process with Fourier coefficients as a
feature set and 67% for Lambert's process with a center-of-
mass feature se%, (Sander, 1988:32).

~“This thesis includes complete system documentation, to

assist those doing further research in this area.(}qbz>

=

vii

ENHANCED AUTONOMOUS FACE RECOGNITION MACHINE

ene ssue

For the past several years, much effort has heen made at
the Airxr Force Institute of Technology to produce an
autonomous face recognition machine. The goal is for a
machine to recognize human faces quickly and aczcurately,
without human intervention. The current Autonomous Face
Recognition Machine (AFRM) is the work of many people,
including Routh, Russel, Smith, Lambert, and Sander. A
brief history of the development of that machine follows
next. (Routh, 1985; Russel, 1985; Smith, 1986; Lambert,

1987; Sander, 1988)

Background

Routh's Theory (Routh, 1985). Routh proposed the theory
on which the AFRM was based when he published his Cortical
Thought Theory (CTT). Routh explored the idea of a
"gestalt", or essence, of an image as that which the human
brain saves to remember objects. He examined applications
in speech recognition.

Russel's AFRM (Russel, 1985). Russel applied this theory
and built the original AFRM. It was designed to have a

computer, with a video system attached, recognize faces.

The AFRM was trained to recognize individuals by
processing four different video images of the same person's
face. The presumed gestalt of the face was calculated and
saved in a data base. Recognition was then accomplished by
presenting still another video image of a face to the
computer. The gestalt for the face was calculated and then
compared, using Euclidean distance, to the averages of the
gestalts of each person in the data base in an attempt to
identify the person.

The process Russel used to form the gestalt from the
video image is shown in Figure 1. He acquired the image of
a face against a plain backgrcund. Face location was
accomplished by an operator centering the face in a frame.
The system could then easily separate the face from the
plain background. Next, the face image was preprocessed by
performing contrast enhancement. The face was then divided
in different ways to form six windows. Windowing was
necessary because thin symmetric faces were not separable
from wide symmetric faces in this system. Windows divided
the face into just the left half, just the right half, just
the top half, and so on. For each window, the gestalt was
calculated. Russel's algorithm for calculating the feature
set, or gestalt, was basically the two-dimensional center-
of-mass of the window, where the darkest portions were given
the highest values. The feature set for each face therefore

consisted of six ordered pairs, representing the coordinates

Acquire Image

(face against plain background)

Locate Face

(operator, manual)

Preprocess Image

(contrast enhancement)

Make 6 Face Windows

(use entire face)

Calculate Gestalt

(center-of-mass)

Figure 1. Russel's Image Processing (Russel, 1985)

of the center-of-mass of each of the six windows. This was
saved in the data base.

Smith's Improvements (Smith, 1986). Russel's system was
limited by requiring a plain background behind the face (to
assist in finding the edges cf the face) and by requiring
human intervention (an operator had to manually place the
face in a frame). Smith eliminated both of these
restrictions by implementing a new face locator. The
process he used is shown in Figure 2. His goal was to
locate faces in images with varying backgrounds. His
process looked for the brightness "signature" of various
facial features. For instance, if a line is drawn
horizontally across a picture through a person's eyes, the
"signature" shows two approximately equal dark spots with
brightness on either side of each of them. Smith used a
different set of windows than Russel, since with the
uncontrolled background he could reliably locate only the
internal features of the face and not the edges. Smith's
AFRM did not perform as well as Russell's system, resulting

in lower recognition scores.

Lambert's Enhapcements (Lambert, 1987). Lambert made
several enhancements to the AFRM. His process is shown in
Figure 3.

Lambert improved the speed of the system, primarily by

rehosting it to its current environment on a Micro-vax II.

Acquire Image

(RANDOM BACKGROUND)

Locate Fzce

(FEATURE SIGNATURE)

Preprocess Image
(contrast enhancement,
slightly modified)

Make 6 Face Windows

(INTERNAL FEATURES ONLY)

Calculate Gestalt

(center-of-mass)

Figure 2. Smith's Image Processing (Smith, 1986)

Acquire Image
(random background,
MOVING TARGET OPTION)

Locate Face
(SHARPEN OPTION, BRIGHTNESS
NORMALIZE, 2-D FEATURES & ELLIPSE)

Preprocess Image

(contrast enhancement, SCALE)

Make & Face Windows

(USE APPROXIMATED FACE)

Calculate Gestalt

(center-of-mass)

Figure 3. Lambert's Image Processing (Lambert, 1987)

He improved the recognition scores of the AFRM by revising
the front-end of the system, where the face location process
occurs.

Lambert developed a technique to normalize the brightness
of an image. He used the local brightness to adjust the
contrast of the image pixels. This allowed for variation in
the overall brightness of the scene.

Lambert looked for facial features which he defined to be
two-dimensional dark spots, in a specified size range,
surrounded by brightness. He then looked for features that
together could form two eyes, a nose, and a mouth. This
method of finding faces produced fewer false alarms (that
is, declaring something to be a face that is not a face)
than did Smith's system. Finally, Lambert drew an ellipse
around the putative internal features to form a face. Where
Smith used the internal portions of the face (features
only), Lambert's ellipse approximated the edges of the face
and allowed more of the face to be processed. This gave
higher recognition scores than did Smith's system. Lambert
used still another set of windows, since his ellipse allowed
him to use more of the actual face than did Smith's view.

To speed the search for a face in an image, Lambert
provided the option of looking for a moving target. The
person to be recognized moves into the camera range. The
search for a face is limited to the area where movement was

noted.

Sander's Further Enhancements (Sander, 1988). In the

next step in the eavolution of the AFRM, Sander made further
improvements to the system. His process is shown in
Figure 4.

To improve recognition performance, Sander changed the
feature set to use the coefficients of a two-dimensional
discrete Fourier transform (2DDFT) of each window of the
face, instead of the darkness center-of-mass. 2DDFTs had
previously been used successfully for other pattern
recognition problems. Sander saved the DC component and the
first and second harmonics, resulting in a 5 X 5 array of
values for each window, giving 150 values for each face
image.

Sander's recognition algorithm continued to use the
shortest Euclidean distance between a test image feature set
and the trained face feature sets.

To reduce recognition time as the data base of faces
grows, Sander used a back-propagation neural network to
train the data base on faces and to perform recognition. If
successful, this would keep the recognition time a constant,
as a result of the distributed memory and computerized
properties of the network, regardless of the size of the
data base. The previous AFRM would respond progressively

more slowly as the data base of faces grew.

Acquire Image
(random background,
moving target option)

Locate Faca
(sharpen option, brightness
normalize, 2-D features & ellipse)

Preprocess Image

(contrast enhancement, scale)

Make 6 Face Windows

(use approximated face)

Calculate Gestalt
(2-DIMENSIONAL DISCRETE
FOURIER TRANSFORM)

Figure 4. Sander's Image Processing (Sander, 1988)

Problem State :nt

The AFRM is not sufficiently fast and accurate, with a

a.

large number of faces, to be of practical operational use.

Research Objectives/Methodology
In order to make the AFRM run as quickly and accurately
as possible, with & large number of faces, the following
steps were taken in this thesis:
1. Examine the 2DDFT feature set. The substitution of a
Fourier transform for the center-of-mass calculation
did not perform as well as expected in the previous

thesis (Sander, 1988:29,30).

Sander's 2DDFT program was examined for possible
errors, and corrections were made.

The choice of the number of windows and their
contents was examined and reconsidered. Windows
were previously based on the center-of-mass
calculation (Sander, 1988:8,9). Sander did not
examine the choice of windows when changing from
the center-of-mass calculation to the use of
Fourier transforms (Sander, 1988:25).

Another Fourier transform routine was substituted
for the one used by Sander. System performance
and processing time were evaluated.

Using the third harmonic, as well as the current

DC term and first two harmonics, was considered.

Improved performance was weighed against increased
processing time.
Test the AFRM with more faces. This system‘had
previously only been trained to recognize 24 faces
(Sander, 1988:29). The data bases were expanded and
the system tested with 50 faces.
Test the use of multiple images of a person for
recognition. Experiments were run with the AFRM
taking multiple looks at a person, with a voting
scheme for resolution. Improved performance was
weighed against increased processing time.
Improve system documentation. The user's manual was
updated and expanded (Appendix A). Complete system
documentation was developed (Appendices A, B, and C),

to assist further research on the AFRM.

Assumptions

Sander's assumptions were not changesd in this thesis.

They are as follows:

1.

The subject(s) are looking squarely at the camera
(the head is not tilted or rotated.

The subject(s) are not wearing glasses.

The subject(s) have relaxed expressions (the face is
not deliberately cortorted).

Four pictures are sufficient to characterize a
person in the data base. (Sander, 1988:2)

11

Standards

Sander's standards were not changed in this thesis. They
are standards that have been met, and must continue to hold
as enhancements are made to the AFRM. The standards are as
follows:

1. The AFRM should demonstrate "human like'"
classification of faces.

2. Recogniticn performance of the AFRM must remain at
least as good as that obtained by Russel.

3. HNo operator interaction is allowed in the face
location, windowing, and recognition processes.

4. The AFRM should be able to process scenes with a
random, uncontrolled background.

5. The AFRM must be able to process scenes with
multiple faces in them. (Sander, 1988:2-3)

The term "human like" implies success or failure during
the recognition process that would reflect the capability of

a human observer of the same data.

Scope/Limitations

The scope of this thesis was to meet the research
objectives previously described. The 2DDFT was exanmined,
corrected, and enhanced to assure proper recognition
performance. The system was tested against a larger data
base of people. The recognition portion of the system was
changed to incorporate a voting scheme using multiple test
images of a face. System performance for each modification
was welghed against processing time. Documentation of the
entire system was developed. No other suggested

improvements to the AFRM were addressed in this thesis.

12

Equipnent
The followina equipment was used for this thesis:
1. Micro-VAX Computar System
2. Imaging Technology Series 100 Image Processing Board

3. Sander's and Lambert's Computer Files (listed in
Appendix A)

4. Dage 650 Video Camera

5. Panasonic WV-5490 Monochrome Monitor
6. Tektronix 4632 Video Hard Copy Unit
7. MicroVMS Version 4.6

8. VAX C Version 2.4

9. ITEX Software Version 1.2

Support

Support was needed from Systems Engineering throughout
this research. Support was also needed from fellow students
and others at AFIT to allow me to take their pictures to

increase ny data base of faces.

umm

This chapter provided a brief background and summary of
the work that preceded this thesis effort. Details can be
found in each contributor's dissertation or thesis. This
background formed the basis for this research project.

The parameters of this thesis were defined by the problem
statement, research objectives/methodology, assumptions,

standards, scope/limitation, equipment, and support.

13

The remaining chapters of this thesis describe further
evaluation and erhancements to the AFRM. Chapter 2
discusses the methodology used for this effort, and Chapter
3 explains the implementation tecliniques. In Chapter 4, the
results of this thesis are given. Chaptexr 5 gives

conclusions of the research and recommendations for further

study.

14

IX. Methodology

Introduction

This is the fifth thesis research effort in the
development of the AFIT AFRM, and as the total research
effort is very large, there are likely to be subsequent
efforts to make the AFRM a practical, operating systen.

Previous work using the substitution of a Fourier
transform for the center-of-mass calculation did not perforn
as well as expected (Sander, 1988:29,30). A working feature
set for faces is critical to the face recognition process;
therefore, examination and correction of the use of Fouricr
coefficients as a feature set was a next logical step.

Adding faces to the database was also an important step.
Making the data base as large as possible helps to prove
that the concepts behind the system are sound.

Multiple looks at a person's face, that is multiple face
images, with some sort of averaging or voting scheme, were
added in an attempt to improve recognition performance.

Previous research efforts included little system
documzntation. Each succeeding researcher spends increasing
amounts of time examining the preceding work and figuring
out what the program does and how it does it. Time taken to
document the system was an important part of this thesis.

It will save follow-on research efforts precious time in

reviewing the AFRM program and associated files.

15

Feature Set

Justification of Method Selected. “Finding an
appropriate feature set is one of the most difficult tasks
in the pattern recognition process" (Sander, 1988:22).
Sander briefly supports the choice of Fourier coefficients
as a feature set. Additional support can be found in the
literature:

"Pransform theory has played a key role in image

processing for a number of years, and it continues to be

a topic of interest in thecretical as well as applied

work in this field. Two-dimensional transforms are used

for image enhancement, restoration, encoding, and

description." (Gonzalez and Wintz, 1977:36)

"The discrete Fourier transform cften pxoves to be a
powerful tool for the characterization of picture
signals, the analysis of imaging systems, and the design
of algorithms for image signal processing." (Wahl,
1987:36)

Several applications of image processing are given, such
as analysis of fingerprints (Gonzalez and Wintz, 1977:xiii;
Wahl, 1987:1) and face profile processing (Wahl, 1987:1).
Fourier coefficients have been used as a feature set in
research here at AFIT, with much success in alphabet
analysis (Bush, 1977) and text recognition (O'Hair, 1984).

Sander chose the coefficients of a DDFT (two~-dimensional
discrete Fourier transform) as the feature set, specifically
an FFT (fast Fourier transform). The use of an FFT
significantly reduces the number of calculations required to
complete the transform, compared to a classical Fourier

transform calculation (Gonzalez and Wintz, 1977:79, Wahl,

1987:41-42) .

16

Research Methodology. Sander's test results with the FFT as
a feature set were disappointing. "Better recognition was
expacted from FaceDFT." (Sander, 1988:30)

In an attempt to demonstrate the 2DDFT as a good feature
set for faces, this researcher examined Sander's progran for
possible errors. ‘The code was checked to verify that the
inputs to the Fourier transform were correct. The outputs
of the Fourier transform, saved in the feature set file,
were checked to make sure that the correct values, the DC
component and first and second harmonics, were the values
saved.

Finally the transform subroutine itself was explored. HNo
citation was given for the transform routine although "an
already existing routine was used" (Sander, 1988:25). The
source of the ccde has since been discovered to be an AFIT
doctoral student (Fretheim, 1988). Freitheim confirmed that
his code had been thoroughly tested (Fretheim, 1989).

Sander's tests were then rerun to verify the results.
Since the results of the retest were not the same as
Sander's published results, it was assumed that some
parameter of his experiments had changed; most likely the
face images he left in his directories are not the ones he
used for testing.

Freitheim's Fourier transform program is an FFT (fast
Fourier transform), which, as mentioned before, runs much

faster than a classical transform by reducing the number of

17

required calculations. The input array must have dimensions
that are a power of two. Sander's input array to the FFT
was always 128 X 128. Since faces vary in size, any unused
portions of the array were filled with zeros. This gives
good results as long as a large portion of the array is
filled with data and not zeros, since only the DC component
and two harmonlcs were saved. An examination of the code
showed that the input data was never larger than 64 X 64,
meaning that one-f>urth or less of the input array of the
FFT was used ZJor actual data.

It was also noted that in filling these input arrays, in
preparation for tte Lvansform, often every other pixel from
the image was used. <this saves processing time with little
or no effect on the accuracy of the result (Kabrisky, 1989).

The code was changed to use a 64 X 64 array as input to
the FFT. Where the use of every other pixel resulted in 32
or less values along a dimension, the code was changed to
use every pixel, to better £ill the array with true data.
All face images were then rerun to recalculate their feature
sets, and all faces were tested to reevaluate AFRM
performarnce.

Since this method still did not completely fill the input
array (faces vary in size), a classical Fourier transform
was used, which could intrinsically compute the transform of
data files of arbitrary dimensions and does not require
input array dimensions to be a power of two. Normally, a

classical Fourier transform results in a much slower

18

program. However, since the Fourier transform routine need
only calculate the DC cowmponent plus two harmonics, some
processing speed could be regained. Another AFIT doctoral
student provided such a routine (O'Hair, 1989), which was
implemented in the AFRM, replacing the FFT. Tests of all
faces were rerun and performance compared to the FFT.

Another research objective in examination of the feature
set, was to evaluate the utility of particular windows.
Since the program allows the six windows of the face to be
weighted (the default is to weight them all equally), each
window was run alone, to see if perhaps one window gave the
same results (or better) than the whole system. Then only
that window would be needed in feature set calculations,
saving processing time.

The choice of window location and size was reevaluated.
Windows were originally chosen considering a center-of-mass
feature set, and not reconsidered with the substitution of
the Fourier transform (Sander, 1988: 25). Further research
showed that these windows were originally chosen because
humans found these to be good windows for face recognition
(Lambert, 1987:2-12). This choice of windows seems to be a
good method and turns out not to be related to the center-
of-mass calculation algorithm. Therefore, the window
contents were not changed in this thesis.

The final research objective in this area was to consider
adding coefficients of the third harmonic of the Fourier

Transform to the feature set, weighing increased processing

19

time against improved performance. The increased processing
time would not only occur in the calculation of the
transform, but also in the time needed to actually recognize
faces. When using a neural network for recognition, Sander
found the processing time (using a locally available
computer) with the third harmonic to be prohibitive (Sander,
1988:31). Since the recognition performance was improved
significantly with the other modifications described in this
thesis, the third harmonic was not needed as part of the

feature set.

Increasing Data Base Size

"A higher dimensioned feature vector shculd improve the
recognition capabilities of the system, by increasing the
separation of the template vectors stored for each person"
(Sander, 1988:2). This increased separation should mean
that the AFRM can run with comparable performance with a
larger data base of faces.

The AFRM was previously tested with 24 faces (Sander,

1988:29). 1In this thesis, the data base was increased to 50

faces.
Multiple Looks

Trained face values are the average of the feature sets
of four different images of a person's face. This helps to
smooth the data, hopefully finding the middle of the range
of values for each feature set entry. Test face values,

however, only use one face image and therefore only one set

20

of features. An averaging strategy is also logical for the
recognition process, so multiple looks at a face, with some
sort of averaging or voting, was examined. ‘

As new people were added to the data base, additional
images were taken to allow for a voting strategy. A total
of eight pictures of each individual were taken, the four
needed for training and four for voting.

After training the AFRM for the new people, each of the
four test images was tested individually against the
training data base. The results were examined manually to
see if voting was likely to improve recognition performance.

Next the four feature sets for the four test images for
each person were averaged in the same way training feature
sets are handled. This average feature set for each test
face was then tested against the training data base and

performance measured and examined.

Documentation

Justificatjon of Method Selected. Proper documentation
is critical in any system that is to be maintained.
"Programs are not used once and discarded, nor are they run
forever without change. They evolve" (Kernighan and
Plauger, 1978:25). The research on face recognition is not
complete; therefore, it is likely that the programs
developed in this and preceding theses will continue to

evolve.

21

Documentation is particularly important when those
maintaining a program are not those who developed it.
(Kernighan and Plauger, 1978:64-65). Comments can provide
important information to help someone understand the intent
of the program (Pressman, 1982:421). The AFRM software is
written in the C programming language, which with
capabilities such as complex data structures, requires the
programmer to "comment anything that is not obvious"
(Darnell and Margolis, 1988:27).

Lack of documentation causes follow-on researchers to
spend excessive resources understanding the work that
preceded them. Also without documentation, the researcher
may misunderstand complex code and make changes that have
unintended effects on the operation of the system. A lot of
time is then wasted in debugging the program.

Research Methodology. Tambert's User Manual (Lambert,
1987 :Appendix C) was updated and included in this thesis as
Appendix A. The first chapter, which discusses normal
operation of the AFRM, required only a few mcdifications to
reflect additions and changes to the user's view of the
AFRM. The second chapter, which covers information for the
AFRM maintainer or developer, was expanded substantially.
Important file name linkages were explained. A full listing
of system files was added, with descriptions of those files.
Also, a full listing of system files left by Sander was
included, also with descriptions of those files, many of

which may still be of use.

22

Appendix B gives a detailed list of all changes made to
Sander's FACEDFT program for this thesis. Many changes were
needed to make the program run correctly and to make the
menus and messages consistent and more meaningful. Many
changes were of a software engineering nature, making the
code more readable and maintainable. Warnings are given for
potential problems discovered but not changed. Some changes
were not made because drastic changes, for documentation
proposes but not much affecting the execution of the
application, would make it difficult for those trying to
follow the development of code from one thesis to another.
Finally changes were made to the program to correct and
enhance the Fourier transform processing as described in a
previous section of this chapter.

The documentation for the program FACEDFT is given in
Appendix C. Sander wrote three versions of the face
program: FACEDFT implements the FFT only, FACENET implements
the neural network only, and FACENETDFT implements both the
FFT and the neural network (Sander, 1988:Appendix A). This
thesis deals only with changes to FACEDFT. However, many
subroutines are duplicated in these multiple versions.
Therefore, documentation that is traditionally included in
the program as comments is provided here as a separate
appendix. Future research may use any of these versions of
the face program. The documentation in Appendix C, while
specific to FACEDFT, should be very useful when dealing with

the other versions. The documentation contains a list of

23

all of the many external files used by the program, with
descriptions of those files' contents. Naming conventions
for those files are given. The linkage of the program to
those files, via DEFINE statements, is described.
References to external libraries, needed to link edit the
program, is discussed. The major global variables are
described. Finally, high-level pseudo-code for the entire
program is provided.

Appendix D gives the final program listing for the
FACEDFT program.

Appendix E gives substitution code to use the classical

Fourier transform in place of the FFT.

Summary

This chapter described the changes made to the AFRM for
this research effort, listing those changes and giving the
rationale behind them. The next chapter discusses how these

changes were implemented.

24

IITI. Implementation

Introduction

The implementation of the changes described in the
previous chapter was done in an evolutionary fashion. Most
of these modifications could be made incrementally, allowing

each to be coded, tested, and evaluated separately.

Feature Set

Changes were made carefully and incrementally to the
Fourier transform portion of the program. First the
existing code was studied and tests run on that system.
Next, changes were made to correct and enhance the existing
Fourier transform (FFT). In parallel, new faces were added
to the system. Then tests were run on all faces.
Performance for previous faces, new faces, znd the
combination of all faces could then be examined. Next the
existing Fourier transform routine was replaced with a
classical Fourier transform. Tests on all faces were
repeated. Once again, performance was evaluated on all
faces, combined and separated into old and new.

The program is documented to allow future researchers to
choose the enhanced FFT or the classical Fourier transform.
Sander's software versions still exist on backup tape.
This includes his original version of the FFT as a feature

set, a version that uses a Neural Network for recognition,

25

and a version that combines the FFT feature set and Neural
Network. This allows comparisons to still be madg between
Sander's feature set and the two feature set variations used
in this thesis. (This also allows work to be continued on

the Neural Network at a future date.)

creasin ta Base
As soon as Sander's system was evaluated, new faces were
added to the system, so that the larger data base would be

available to evaluate all changes to the AFRM.

Multiple Looks

Voting was looked at whenever testing with new faces.
This testing could not be done on face images left by
previous researchers, because there weren't sets of four
test images per person to use for voting. Voting was
examined for the changed version of the FFT coefficients
feature set and the classical Fourier transform coefficients
feature set, on new faces added to the system.

The code for voting was marked by comments, making it

easy to choose to use the voting scheme or not.

Documentation

The documentation was also dgne in an evolutionary
fashion. The first cut covered that part of the code that
had to be understood to start research on the other thesis
objectives. The documentation was corrected and expanded as

work progressed on those other objectives. Finally,

26

remaining gaps were filled in to provide as complete a set
of docunentation as possible.

Many errors and potential problems were found and
corrected. These are listed in Appendix B. Some potential
problems were noted but not corrected. Appendix B lists
these as warnings and give workarounds where possible.

The overall structure of the program, variable names,
etc., were left intact, to avoid loss of continuity with
previous and parallel versions of the program. This meant
leaving inconsistencies in the structure of the code,
particularly noticeable in MENUl, where some processes are
broken out into subroutines while some rather long processes
are included inline. This also meant leaving such
unmeaningful names as MENUl, MENU2, MENU3, sX, sy, and many
more.

Documentation of the material left by Sander is given in

the User's Manual (Appendix A).

Summary

This chapter described how the changes described in
Chapter 2 were implemented in the AFRM. The next chapter

examines the results of these changes.

27

Introduction

This chapter presents the results of this thesis
research. Results are compared to previous theses where

applicable.

Feature Set

der! sults. Sander's FACEDFT program and data were
retested for comparison with his results. Table 1 shows the
results of these tests. The FACE column shows the
performance Sander obtained when testing his data against
Lambert's program. The AFRM recognized 16 of 24 people, or
67%. The FACEDFT column gives the results of Sander's FFT
version against that same data, where 15 of 24 people, or
63%, were correctly recognized.

Sander proposed that some of the problem may be that
Fourier transforms are more sensitive to tilt than are the
center-of-mass calculations used by Lambert (Sander,
1988:30). However, in adding more faces to the data base,
it was found that the face location algorithm was very
sensitive to tilt. Therefore faces with tilt are pretty
much eliminated by the face locator and never have feature
sets calculated. This researcher does not believe that tilt
explains the disappointing performance of the Fourier

transform in the AFRM.

28

Table 1. Comparison of FACE and FACEDFT

Statistics from

Sander Thesis Rerun of
(Sander, FACEDFT Test
1988:32)

Name FACE FACEDFT Retest of FACEDFT
Ver 1 Ver 2 ver 3

rmaple
mkabrisky
mlambert
llambert
dlambert
srogers
ecrawford
mmayo
jsillart
dbane
druck
kcox
efretheim
lroberts
mdrylie
gtarr
csabick
mohair
ppleva
dbridges
ddoak
glorimor
rmorales
gdawson

} e

DG M UK D WK B NG B
e

=
K ICIC DICIE I G D WK B¢ NI N

K O B NI WG NI DK NN

key: - y weans yes, face recognized correctly (first choice)
- number means face not recognized, number is placement
of correct person in list of choices
- >15 means correct person not in list of top 15
choices

Retnst ander _Data. The remainder of Table 1 shows a
retest of Sander's program and Sander's data. Where
multiple test images existed, all were used, with simple
voting, as there was no way of knowing which Sander may have
used. The retest results are not identical to Sander's
tast, recognizing 19 of 24 people. It is assumed that sorme
parameter of his experiments changed between theses; nost
likely the face images left by Sander are not the sane used
by him for his testing. It was decided to ignore these
retest results since the parameters of the test were not
well understood. Recognition performance in this thesis is
conmpared only with the results Sander clainms.

At the same time, the faces were retested using each
window alone. Previously all windows were combined and
weighted equally for recognition calculations. These tests
were run before it was realized that the source of the data
could not be traced. The results of the individual window
testing are shown in Table 2, with the combined test also
presented for comparison. HNo single window showed superior
performance. Regardless of the source of the data, it
appears that combining all six windows gives the best
feature set for faces.

Test of Modified FACEDFT. Table 3 shows the results
obtained when testing the program with the modified FACEDFT
program. This is the version where the input array to the

Fourier transform is 64 X 64 and that array is filled as

30

Table 2. Comparison of FACEDFT
And Individual Windows

Perun of Rerun of FACEDFT
FACEDFT with single window

Name Ver test 1 2 3 4 5 6

rmaple 1 Y Y Y Y Y Y Y

mkabrisky 1 2 4 3 6 3 4 y

mlambert 1 Y Y 4 Y y ¥ Yy

llambert 1 Y Y Y Y 2 2 y

2 Y Y Y Y 2 2 Y

dlambert 1 2 Y Y 3 y 2 2

srogers 1 Yy Y Y Y Y Y Y

ecrawford 1 4 4 9 9 2 2 3

mmayo 1 Y Yy Y Y Y Y Yy

jsillart 1 Y 2 2 2 Y Y Y

dbane 1 Y Y Y Y Y ¥ Y

druck 1 3 4 g 4 2 3 3

Rcox 1 2 2 4 2 Y 6 2

2 3 3 4 4 2 5 2

3 2 Y 2 2 2 4 2

efretheim 1 ¥ Y Y Y 2 y Y

2 Y Y Y Y Y Y Y

3 Y Y b 4 Y 2 Y Y

lroberts 1 Y 3 2 Y Y Y 2

. 2 y 2 Y Yy Yy Yy Yy

ndrylie 1 Y Y 4 Yy 2 Y Y

gtarr 1 y Y Y Y Y Y Yy

. 2 Y b 4 b 4 Y Y Yy Y

csabick 1 Y Y Y Y Y Y Y

mohair 1 4 5 3 7 y 2 lo

2 Y 2 3 Y 4 2 Y

3 Y Y Y 3 Y Y 5

ppleva 1 Y 3 Y 3 2 Y Yy

dbridges 1 Y 3 Y Yy 3 Y A

2 Y 3 Y Y 3 Y 2

ddoak 1 Y Y Y Y Y 3 3

glorinor 1 y y y Yy v Y Yy

rmorales 1 Y Y 4 Y Y Y Y

2 4 Y 3 b 4 3 Y Y

gdawson 1 Y 4 2 Y Y Yy Y
key: - y means yes, face recognized correctly (first choice)

- number means face not recognized, number is placement
of correct person in list of choices

- >15 means correct person not in list of top 15
choices

31

Table 3. Changed ACEDFT

Name Ver 1 Ver 2 Ver 3 Ver 4 | Averaged

mkabrisky
mmaneely
rfiler
vmilholen
wrecla
pwhalen
jbrill

* rjackson
mreinig
jhamilton

* rricart >1
ssablan
dbossert
thamilton
chogan
rsmith 1
tmanely
pmarshall
jlong >
mleahy
syarost
tdavis
mjohnson

* dumphress
jsrubar
fbrown
brobb
gmiracle
ssheldon
sberger
sfiler
bconway
dbarr
kfife

=

KKRRIEKIKKIE N A UK VK NS O NI N B g
I

v
-
K NN UK DK NI N QKK BT UK oG

v
H
KKK B N UK UK I KR O DI LIS I < 1S

IGIC GG N D U Q1€ UK O RIS U1 U1 N O WG 16 2 M
KKK WK UK 0K N O N KKK IC G

key: - y means yes, face recognized correctly (first choice)
- number means face not recognized, number is placement
of correct person in list of choices
- >15 means correct persen not in list of top 15
choices

32

Table 3. Changed FACEDFT (corntinued)

Name Ver 1 Ver 2 Ver 3

rmaple
mlambert
dlanbert
srogers
ecrawford

* mmayo
jsillart
dbane

* druck >1
kcox
mdrylie
gtarr
mohair
dbridges
glorimor
rmorales

Y Y

(S

K D WK B NS O WK
[\¥]
l<

key: - y means yes, face recognized correctly (first choice)
- number means face not recognized, number is placement
of correct person in list of choices
- >15 means correct person not in list of top 15
choices

33

much as possible with actual data ~ther values are set to
zero). This table is divided into two sections, one for the
faces added in this thesis and one for the previously
digitized faces.

It was necessary to reprocess the previously digitized
faces to calculate their feature sets with the altered
program. This portion of the data base now contains only 16
faces, rather than the previous 24. Eight faces could not
be successfully reprocessed, as the face locator could not
find four face images to use for training. These eight sets
of faces were discarded and 34 new people added to total 50
faces.

Performance of the change to Sander's code alone can be
evaluated for the added faces by supposing only one test
image was taken, say version 1, and then considering those
results.

The previously digitized faces still used simple voting,
resulting in a tie for mohair.

The tabulated results are shown in Table 4, lines a, b,
and c. The recognition performance is in the same range as
those seen by Sander.

The processing time for the classical Fourier transform
was compared to the FFT. This was done informally, while
watching the AFRM recalculate features sets, since an
approximate comparison was all that was needed. There was
no noticeable difference in the time needed to calculate

feature sets.

34

Table 4. Tabulated Results

50 faces Raw Score Percentage
a) Previously digitized faces 9 or 10/16 56 or 63
) Added faces vey 1 22/34 65
c) Combined with existing faces 31 or 32/50 62 or 64
d) Added faces simple vote 27 or 28/34 79 or 82
e) Combined with existing faces 36 or 38/50 72 ox 76
f) Added faces averaged 28/34 82
g) Combined with existing faces 37 or 38/50 74 or 76
45 faces Raw Score Percentage
(revision of above scores)
h) Previously digitized faces 8 or 9/14 57 or 64
i) Added faces ver 1 22/31 71
j) Combined with existing faces 30 or 31/45 67 or 69
k) Added faces simple vote 27 or 28/31 87 or 90
1) Combined with existing faces 35 or 37/45 78 or 82
m) Added faces averaged 27/31 87
n) Combined with existing faces 35 or 36/45 78 or 80

Note: Where voting schemes result in a tie, two scores are
given separated by "or". The higher score is for the tie
counting as recognition and the lower score is for the tie
counting as failure to recognize.

35

Table 4.

FACEFT
50 ces

Previouly digitized faces

Added faces ver 1
Combined with existing faces

Added faces simple vote
Combined with existing faces

Added faces averaged
Combined with existing faces

45 faces
(revision of above scores)

Previouly digitized faces

Added faces ver 1
Combined with existing faces

Added faces simple vote
Combined with existing faces

aa) Added faces averaged
bb) Combined with existing faces

Tabulated Results (continued)

Raw Score
11/16

23/34
34/50

26 or 27/34
37 or 38/50

28/34
39/50

Raw Score

11/14

22/31
33/45

25 or 26/31
36 or 37/45

27/31
38/45

Percentage
69

68
68

76 or 79
74 or 76

82
78

Percentage

79

71
73

81 or 84
80 or 82

87
84

Note: Where voting schemes result in a tie, two scores are

given separated by "or".

The higher score is for the tie

counting as recognition and the lower score is for the tie

counting as failure to recognize.

36

Face Location Problems. It was later discovered that
some faces, although located and processed, were not located
correctly. For example, sometimes a dark area under the
chin was used as the mouth instead of the mouth itself.

This would occur on only some of the faces. When four faces
are averaged for training, some using correct features and
some not, the feature set is distorted. The faces found to
have this problem are denoted in the tables by astericsks in
front of the nane.

If these faces arc discarded, because they were not
located and processed as intended by the algorithm, the
recognition performance scores must be revisited. The
rasulting scores can be seen in Table 4, lines h, i, and j.
The scores for the previously digitized faces remained about
the same. There was an improvement in recognition scores
for added faces (67% or 69%, depending on resolution of the

tie) and for all faces (71%).

Test of FACEFT. FACEFT used a classical Fourier
transform instead of an FFT. The results of testing against
FACEFT are shown in Table 5. Once again the table is
divided into two portions, previously digitized faces and
added faces.

7 ® results for all 50 faces are tabulated in Table 4,
lines o, p, and q. Recognition scores are improved over the
FFT, at 68% and 69%. The results, after discarding the

faces not located and processed correctly, are shown in

37

Table 5. FACEFT

Name Ver 1 Ver 2 Ver 3 Ver 4 | Averaged

nkabrisky
mmaneely
rfiler
vmilholen
wrecla
pwhalen
jbrill

* rjackson
mreinig
jhamilton

* rricart
ssablan
dbossert
thamilton
chogan
rsmith
tmanely
pmarshall
jiong >1
mleahy
syarost
tdavis
mjohnson

* dumphress
jsrubar
fbrown
brobb
gmiracle
ssheldon
shberger
sfiler
bconway
dbary
kfife

3

=

KGRI WD UK D W UK OF NI SIS RIS IS S
=

MREKGIKRKKKR U LUK WK NG A KNI O

KKK UG UK & L UGG W IR K O WS G G G
I I I I I I IS G KIS 10 W I I @ G MG 1 LI 3 G I I I A 1 1S A

KNNIKKKIKKEK DN UK WK NSRRI I DK N
v
| =

key: - y means yes, face recognized correctly (first choice)
- number means face not recognized, number is placement
of correct person in list of choices
- ~15 means correct person not in list of top 15
choices

38

Table 5. FACEFT (continued)

Name Ver 1 Ver 2 Ver 3

rmaple
mlambexrt
dlambert
srogers
ecrawford 1

* mmayo
jsillart
dbane

* druck 1
kcox
mdrylie
gtarr
mohair
dbridges
glorimor
rmorales

Y Y

I WG RIS W LK S

KKK

key: - y means yes, face recognized correctly (first choice)
~ number means face not recognized, number is placement
of correct person in list of choices
- >15 means correct person not in list of top 15
choices

39

Table 4, lines v, w, and x. These are the best scores Yet:
the best score being 79% for previously digitized faces,
added faces and combined faces scoring 71% and 73%,

respectively.

Increasing Data Base Size

The results of this change are not evaluated separately;
the value is in showing how program changes perform against
a larger data base of faces.

There were unanticipated problems found when adding new
faces to the data base. The Signal Processing Lab had moved
to a new location and the overhead lighting was different.
Many seemingly good face images coculd noct be found by the
face locator. The overhead lighting was strong enough to
"wash out" the upper half of many faces, while creating dark
shadows on the lower portions of the face.

This situation was alleviated somewhat by placing a desk
light upside down on the floor near the camera. The problem
was also correctable on some faces by adjusting the
brightness threshold (an option on the main menu of the
AFRM) .

Another problem, previously noted in this chapter, is
that the face locator would occasionally use‘an incorrect

part of the face as a feature. Most common was a dark

shadow between the mouth and chin being used as the mouth.

40

Multivle Looks

There are many ways to implement voting and then many
ways to score performance. Tables 3 and 5 (for programs
fTACEDFT and FACEFT) show the results of testing with four
test images of each individual for new faces added to the
data base. Two voting schemes were evaluated.

First, a simple vote was used, counting how many times a
person was correctly identified. In cases with an even
nunber of faces, ties were broken by examination of who
ranked above an individual not successfully recognized.
Occasionally, there was still a tie, such as the tests on
mohair and jsrubar.

The results, before the face location problem was
discovered, are given in Table 4, lines d and e (79% or 82%
for added faces only and 72% or 76% for all faces) for
FACEDFT and lines r and s (76% or 79% for added faces only
and 74% or 76% all faces) for FACEFT. The results after
discarding the problem faces are shown in Table 4,lines k
and 1 (87% or 90% for added faces and 78% or 82% for 45
faces) for FACEDFT and lines y and 2z (81% or 84% for added
faces and 80% or 82% for 45 faces) for FACEFT. These are
improved scores over not using a voting scheme.

The second voting scheme is given in the "averaged"
column, referring to averaging the four test feature sets in
the same way training feature sets are done. By averaging
the four corresponding values for each feature, not only is

the closest face important, but how far off any missed faces

41

are is a factor in recognition. This was only tested with
new faces, as only those faces have four values for
averaging.

Performance on all added faces using averaging is shown
in Table 4, lines f and g (82% for added faces and 74 or 76%
for all faces) for FACEDFT and lines t and u (82% for added
faces and 78% for all faces) for FACEFT. The result, after
discarding the faces not located and processed correctly, is
shown in Table 4, lines m and n (87% for added faces and 78%
or 80% for 45 faces) for FACEDFT and lines aa and bb (87%

for added faces and 84% for 45 faces) for FACEFT.

Documentation

The results of documenting the system aras difficult to
measure. This researcher referred often to notes that were
the basis for this documentation. But the more impertant
measure is how useful it is to those modifying this system

in the future.

Summary

This chapter showed the results of the research efforts of
this thesis. The next chapter discusses conclusions that

may be reached from these results.

42

V. _Conclusions and Recommendatjions

Introduction
This chapter presents conclusions that can be reached as
a result of this thesis research. Recommendations for

further development of the AFRM are provided.

Eeature Set

Correcting and enhancing the use of the FFT to form the
feature set improved performance of the system, after the
incorrectly located faces were eliminated. Sander's
recognition score was 63%; here 71% recognition was achieved
for the added faces. Performance scores for previously
digitized faces was not improved, but were not totally
controlled for this thesis (previous processing of image hot
well documented or understood). The recognition score for
all 45 faces was 67% or 69%, depending on how the tie is
resolved.

Substitution of the classical Fourier transform gave
equal or better overall recognition than the FFT. The
recognition score was 71% fcr added faces. Scores for
vreviously digitized faces improved significantly, to 79%.
The recognition score for all 45 faces was 733%.

when the windows of the face were examined individually,
no one window showed performance superior to the combination

of 2ll windows. This can be seen in Table 2.

43

The choice of window contents was briefly evaluated and
no change 1s recommended.

Addition of the thirxd harmonic to the feature set was
reconsidered. The possible increase in recognition
performance was not believed to be worth the extra
processing time, since recognition performance was

significantly improved by other means.

n S ata Base
Increasing the data base size was important for properly
evaluating other objecti res in this thesis. Adding nore
people to the training and test data bases gives higher

confidence in the results.

ulti ooks

Adding multiple looks at a face for recogni':ion, both by
simple voting and mathematical averaging, increased
performance of the AFRM for both of the Fourier transforms.
Since the averaging technique gave equal or better
performance than simple voting, the averaging technique is
preferred.

The best recognition score, 87% (assuming ties cannot be
resolved as recognition), was achieved by the combination of
either modifying the FFT or using the classical Fourier
transform, using the averaging technique for voting, and
eliminating faces not corrected located.

When all of these changes are combined, the FFT and

classical Fourier transform seem to perform equally well to

44

cach other. Both the enhanced FFT and the classical Fourier
transform gave higher recagnition scores than Sander

achieved.

Documentation
The systen documentation is now extensive and complete to

support future research efforts.

Summn X !
This thesis demonstrates that the coefficients of the
Fourier transform are a good feature set for face

recognition, with 87% racognition scores realized.

econmendations for Further Researc

Many recommendations of Lambert, not yet investigated,
remain as potentially valuable areas to explore. These
include:

- use of color images

- use of binocular images

- use of a parallel processor

- development of a better set of facial features for
face location

Other recommendations of Lambert also remain valid. Those
listed above should be given higher priority (Lambert,
1987;6-2 through 6-5).

Many of Sander's recommendations were explored in this
thesis. The remaining suggestions that were not explored

but still quite valid are:

45

- search for a feature set that is scale and rotatien
independent, such as use of the log z transfornm

- evaluate the implemented neural network and compare
performance to other existing neural networks

- move the chosen neural network to a parallel
processing or vector processing machine (Sander,

1985:35-36)

As a result of this thesis the following recommendations

are nade:

- As nentioned above, Lambert suggested improvements to
the face location algorithm. This was found to be a
significant problem when adding faces to the AFRM.
with the possible selection of incorrect features that
are physically close to the correct features, manual
observation of the face location process is required.

- Perhaps controlled lighting should be added to list of
assumptions for the AFRM (Chapter 1), if the program
cannot be made to overcome the lighting problens.

- Further experimentation may demonstrate whether the
classical Fourier transform or the FFT is superior for
faces. Perhaps still another transform can be found
to improve performance further.

46

Appendix A
AFRM - Autonomous Face Recognition Machine

USER'S MANUAL

This is an updated version of the User's
Manual written by Lambert (Lambert,
1987:Appendix C). Those portions not
changed were copied verbatim. Some
portions were rewritten and material was
added and deleteua to reflect the current
system.

47

Table of Contents

Introduction0 0. 0.
I. Operation

Logging On and Off

Things You Should Not Do .

Menus . . . e e e e s
IX. Technical Details

Files . . e e e

File ankages
Modification .

Sander Files (Includes Lambert Flles)

48

Page
49
50
50
51
52
56
56
57

59
61

Introduction

The information presented in this manual is divided into
2 parts: Chapter 1 gives enough information for a casual
user to operate the AFRM (Autonomous Face Recognition
Machine), and Chapter 2 gives information needed to maintain
the AFRM.

User-friendliness was a primary concern when developing
the AFRM. The AFRM is menu-driven, giving the user choices
of actions. Prompts tell the user exactly what is required
from each keyboard (usexr) entry. The system is as much as
possible fault tolerant. The AFRM code has been documented
thoroughly in Appendix C. The program is written in the C
programming language (Appendix D). The goal was to write
the code as efficiently as necessary, and then as readable
as possible.

It is hoped that future modification to the AFRM will
maintain an easy user interface and complete system

documentation.

49

I. Overation

Loaging On_and Off

The easiest way to get to know the AFRM is to sit down
and use it. It is located on the Micro-VAX II designated
IMAGER, or SMV2A, in the AFIT Signal and Information
Processing Lab. To run the AFRM, log onto IMAGER and
execute the program. For example:

run [Kabrisky.brobb.code])facedft
The system will run automatically; it will perform several
seconds of hardware and software initialization, remind you
to turn on the camera and video monitor, and present the
main menu. When you are done using the AFRM, return to this
main menu and select the QUIT option. This will get you out
of the program, reminding you to turn off the camera and

video monitor.

50

Things You Should Not Do

1. The AFRM needs to create temporary files now and then
as a normal part of its operation. It will deleﬁe‘these
files as soon as they are no longer needed. Since these
files are created and deleted without informing the user,
the user should avoid saving files with these temporary file
names. Never save faces in files named:

BNORM. IMG
ORIG. IMG

At some unannounced time YOU WILL LOSE THEM.

2. The AFRM has been designed to be fault tolerant. You
can enter anything you want, at any prompt you want, and the
AFRM should handle it. The AFRM will inform you if your
input is invalid. The only entries that should not be
entered are CTRL-C and CTRL-Y, which terminate the program
without going to the main menu option QUIT. These should
not be used because the AFRM will not save updated database

files.

51

Menus

The menus allow the AFRM user to do the following:

0: QUIT

This is the proper way to exit the AFRM.
Updated database files are saved at this time.

1: ACQUIRE IMAGES
There are several ways to input images into the
AFRM and there is a sub-menu for all of the

options.

0: RETURN TO MAIN MENU

1l: STATIONARY TARGET
Allows acquisition of a 512 X 480 image
from the camera.

2: MOVING TARGET
Acquires a background scene from the
camera (nobody in it), then acquires a
second scene (with subject). The AFRM
will provide the rectangular area which
bounds the region that changed between the
two scenes. This tavget area is all that
is processed by the face locator (if
locator is selected) and so the face
locator will be faster than it would be
for a full size scene as well as being
less likely to acquire a false target.

3: LOAD IMAGE FROM MEMORY
Allows user to load a previously stored
image (up to 200 X 200) to the video
screen.

4: SAVE IMAGE IN DATABASE
Allows user to save a full screen image
(512 X 480).

5: SET CAMERA PORT
The default is port (0). This allows
connecting adéitional cameras to ports (1)
and (2).

6: CAMERA CHECK
Allows continuous acguisition of images so
the camera can be positioned and focused.

7: RE-INITIALIZE HARDWARE

Go back to default camera port, clear the
video screen, etc.

52

8: LOAD LARGE IMAGE FROM MEMORY
Allows user to load a previcusly stored
full-screen image (512 X 480).

: FIND FACES

The face location algorithm will look for faces
in the image on the screen and save all it
finds to temporary files. There is an option
to sharpen the scene that is normally not
needed but sometimes helps the face finding
process.

: GESTALT AND IDENTIFY / SAVE

This option only works after a face(s) was
found by option #2. If no face(s) was found
then this option will return to the main menu.
This option runs the gestalt algorithm of the
first face found by option §2. Then it runs
the recognition algorithm on that face. During
recognition the user is allowed to save the
face and its gestalt data in the database.
There is no other time when a new face and its
gestalt data are available for saving in the
database, so save it NOW if desired, otherwise
it will have be gestalted again (faces are
easily deleted from the database if later not
needed). If more than one face was found in
option #2, then all faces will be gestalted and
identified in the order found.

DISPLAY CONTENTS OF DATABASE

Shows names of faces for which the AFRM has
been trained and names and version numbers of
faces that can be used for reccgnition.

DELETE A SUBJECT

This option deletes the training file for this
subject.. The actual images and gestalt values
will still be saved as faces that can be used

for recognition and the AFRM can be retrained

with this subject later.

DELETE AN IMAGE

This option allows the deletion of single
images (files that are used for recognition).
The actual images are saved as images that are
neither trained or used for recognition, but
can later be reused for either purpose.

¢ TRAIN

This allows the user to train the database with
4 files from the .IMG section (faces used for

53

recognition) of the database. The files must
all have the same name and must have different
version numbers. To exit this option at any
time, enter a zero version number.

Fault tolerance is really evident in this
section of the AFRM because it is so important
to maintain a correct database. The AFRM
constantly checks user inputs for validity and
gives out pertinent information when it finds a
mistake. For example, suppose it is decided to
train the AFRM with the name Smith, version
numbers 1, 2, 3, and 4. ‘The AFRM will verify
that the name entered exists in the .IMG
saction and that it does not exist in the
trained section. It will verify that files
exist for all the versions selected and that
the same version number was not selected more
than once. If a mistake is made, the user may
exit at any time.

DEMONSTRATION
0: RETURN TO MAIN MENU

1: IDENTIFY A PERSON
This option allows the user to demonstrate
the recognition capabilities with
previously gestalted and saved images,
trained and not (those used for
recognition). This option can also be
used to obtain recognition scores so that
the AFRM can be evaluated.

2: TOTAL SYSTEM
This option allows the user to run all
AFRM algorithms together starting at image
acquisition (moving target) and ending
with recognition. It is advised that the
user first select the camera port and do a
"camera check". Then this option is
chosen. When the screen is blank, have
the subject walk into the field of view of
the camera, turn and stare at the camera,
and stand still for a few seconds. As
soon as the AFRM "sees" the subject, it
will snap a picture and begin to look for
a face. If a face is found, then the AFRM
will gestalt it and try to recognize the
individual. (There is no option to save
the face.)

54

9: CHANGE THRESHOLD
This option is used to change the brightness
threshold used by the face location algorithm
(option #2). The default value is zero. To
get a darker image (more pixels), increase the
value, using a small (1 through 5 recommended)
positive integer. To get a lighter image (less
pixels), decrease the value, using a small
(-1 through -5 recommended) negative integer.

55

ITI. Technical Details

Files

Many files support the AFRM, both for development and

use. The files are backed-up on tape in the Signal and

Information Processing Lab. It contains the following:

(kabrisky.brobb)]
editini.edt
login.com

(kabrisky.brobb.code)
autotake.c
autotake.exe
autotake.obj
facedft.c
facedft.exe
facedft.obj
faceft.c

options_£file.opt
rl.com

(kabrisky.brobb.dbase]
others.dat
train.dat
bothersfft.dat
btrainfft.dat
robbothers.dat

robbtrain.dat
othersft.dat

trainft.dat

main directory
for full-screen edit mode
for logging onto system

cofde directory

program to take 4 pictures of a
person and consolidate as one
large image

updated version of Sander system
(see Appendices B, C, and D)

substitute transform for facedft
(see Appendix E)

for compile

for link

database for face program

Lambert test face feature sets
Lambert training face feature sets
Sander test face feature sets
sander training face feature sets
Robb test face feature sets (from
latest facedft)

Robb training face feature sets
(from latest facedft)

Robb test face feature sets
(faceft)

Robb training face feature sets
(faceft)

several files of the form:

name.img;*
name.pic;*

nameset.img; *
nameset.pic;*

- image files - multiple versions of

test faces

- image files - multiple versions of

training faces

- image files ~ sets of 4 test faces
- image files - sets of 4 training

faces

56

File Linkages

There is an important linkage between the name.img;*
files and othersft.dat (or any others file), with a similar
important linkage between the name.pic;* files and
trainft.dat (or any training file). When images are
gestalted and saved (option 3), the user specifies a name
for the picture, usually the person's first initial and last
name. The AFRM adds this person to the database as
name.img;* where * is the next consecutive VMS version. The
person is also added to the gestalt file (such as
othersft.dat), the version number being the next consecutive
gestalt version for this file, THE AFRM ASSUMES THAT THESE
VERSION NUMBERS MATCH! This will be true if the user always
sticks with the same training and others file (can be
changed in the program) and if the user never uses VMS to
alter version numbers. NEVER DO A VMS PURGE COMMAND ON THE
DATABASE! Pixel images of people will be lost (forever, if
not backed up) and the assumed linkage between the image
file and gestalt entry version numbers will be lost.
Similarly, when the AFRM is trained for a person (option
#7), the four entries in the others file are copied to the
training file as versions 1, 2, 3, and 4. (There can only
be one set of trained faces for a given name.) The four
name. ing;* files are copied to be name.pic files. This is a
simple VMS copy. The AFRM assumes that the version numbers

will be 1, 2, 3, and 4.

57

When a subject or image is deleted from the AFRM, cntries
are moved between the training and others files, and
name.img;*, name.pic:;*, and name.pxl;* (pxl files not
gestalted) files may be moved around and version numbers
changed.

BOTTOM LINE: Never do a VMS purge command on the
database library. Do not move, copy, rename, etc. any pixel
files, unless doing development work on the AFRM, and taking
into consideration the above description. 1In that case, it
is recommended that the developer study the program and
documentation (Appendices C and D) to be certain the AFRM
will still work correctly. It would be even better to

design around these problems and correct them.

58

Modification
If a change is needed in the AFRM, then the C source code
must be edited, recompiled, and linked to the appropriate

libraries. The following commands are needed to accemplish

this:
edit name.c (where name is face or facedft
cc name /nooptimize or whatever version is to be
@rl name modified)

The nooptimize option on the compile (second command) is
necessary. When the optimizer is used (the default for the
command) the program will compile and link but not run
correctly. The error is usually a floating point error in
the subroutine called recognize. This has been reported to
Systems Engineering.

The third command runs a command file called rl.com which
identifies all the appropriate libraries for you (so you
don't have to do all that typing). rl.com and an associated
file called options_file.opt are located in the code
directory. The contents of these files are as follows:

ri.com

$ link 'P1',dua0:{itilo0.itex}itex1l00/library, -
duao: [itil00.toolbox]toolbox/library, -
dual:(iti100.vms}vmsl00/library, -
dua2: (kabrisky.brobb.code)options_file/opt

options file.opt

sys$share:vaxcrtl.exe/share

When changing the program, make sure that the define

statements at the beginning of the program point to the

59

correct database libraries. See Appendices C and D for tha
documentation and code.

To create a new training or others file, simply create
that file with a zero on the first line (means zero faces in
file) and an asterisk on the second line. Change the define
statement at the beginning of the program to point to the
file(s) to be used.

A modification that may be necessary in the future is a
change to the declared size of the arrays in the AFRM. The
AFRM is presently set to handle up to 100 subjects in the
training file (400 gestalt sets, tlist[400)) and 200 images

in the others file (200 gestalt sets, ilist([200}).

60

Sander's _Files (Includes Lambert's Files)

These files are backed-up on TK50 tape 007 in the Signal

and Information Processing Lab. The save set is ’

KABRISKY.BCK, dated 29 Jan 29. It contains the following:

(kabrisky.brobb]
autotake.c
autotake.exe
autotake.obj
backup.com
con.com
edtini.edt
face.exe

l.com
login.com
read.me
rrobb. img

{kabrisky.brobb.code

b.lis
bat.com
batl.com
face.c
face.exe
face.obj
facedft.c
facefft.c
facefft.exe
facemap.c
facenewv.cC
facenet.exe
facenet.jou
facenet.obj
facenetdft.c

facenetfft.c
facenetfft.exe
fft.c
get.com
l.com
loadface.c
mom.c

mom. exe
mom2.cC
nom2 . exe
mom2.out
myface.c
myface.exe

main directory
program to take 4 pictures of
individual and save as one image

back up systen

for full-screen edit

Lambert system modified to run for
Sander

link C program

standard VMS file

test image

listing of compile of bfacefft

run program

run program

Lambert system modified to run for
Sander

Sander system with DFT

subroutine from system
Sander system with Neural Network

Sander system with DFT and Neural
Network

subroutine from system

copy files

link program

program to load face file to screen
program to calculate distances between
feature sets of faces

piece of system

61

newface.c - piece of systenm
newface.exe

nl.com - link program

options_file.opt - needed to compile and link C programs
put.. com - copy files

readfftfile.c - subroutine from system

results.

results.net
sander. img

save_fft.c - subroutine from system
sub.doc - block comment set up to document
routines

test1l5020.net

testface.c - piece of system

testface.exe

testsubs.c

trans.c - Lambert's code for feature set

(kabrisky.brobb.code.origcode) - Lambert's files -

autotake.c documented in his thesis
autotake.exe (Lambert, 1987:

bright.c Appendix B)

bright.exe

face.c

face_sig.c
face_sig.exe
graph.c
graph.exe
mti.c
mti.exe
newface.c
sixel.c
sixel.exe
sub_demo.c
sub_demo.exe

(kabrisky.brobb.code.thesisdbase] - empty

(kabrisky.brobb.dbase]
b.dat - training files and others (test face)
bothersfft.dat files (feature set values) for various
btrainfft.dat versions of code
nothersfft.dat
ntrainfft.dat
others.dat
othersfft.dat
train.dat
trainfft.dat

62

several files of the form:

name. img;* - pixel files - multiple versions of test
images
name.pic;* - pixel files - multiple versions of

training images

{kabrisky.brobb.prntimage]
baddisp.c
baddisp.exe
baddisp.obj
bat.com
bhalf.c
bhalf.exe
bhalf.obj
bhalfface.c
bhalfface.exe
bhalfface.obj
faceloc. img
l.com
phtest.c
phtest.exe
phtest. for
phtest.obj
prntbig.exe
prntbig. for
prntbig.lis
prntbig.obj
prnth. for
prnthuge.exe
prnthuge. for
prnthuge.obj
prntm.exe
prntm. for
prntm.obj
recognize.out

63

Appendix B
Program Changes

64

Corrections and Cleanup:

- Hard-coded files names were located throughout the
program. These were all moved to the beginning of the
program in DEFINE statements. Those files now zare tha
library of picture images for training, the library of
picture images for testing, the library for picture images
not trained or tested, the training data base, and the
testing (others) data base.

- The program documentation stated that the data base files
were read into memory at the start of the AFRM and written
back to disk upon exit. This was not true. Now it is.

- The program attempted to save the data base files upon
exit only if those files changed. fThe criteria used was not
conclusive (same number of entries at start and end). HNow
the data bases are truly only saved if changad. Flags
(TRAIN_CHANGED and OTHERS_CHANGED) keep track of the files
status.

- Cleaned up menus:
- options in ascending order
~ line spacing is consistent
- all options are listed (0.9 and 1.8 existed but were
not shown on the menu)
- code is ordered by option

- FACEREC has coding errors. Some code was partially
repeated and the subroutine would not link correctly. The
code was corrected.

- It was found that compilation with the optimizer (the
default) created a program that could fail with a floating
point overflow error. It was determined that pointers
within the structure were not correct. Compilation without
the optimizer eliminates the problem. This has been
reported to Systems Engineering.

- Some character arrays were too short to contain the
necessary data. This occurred when file names were built by
concatenating pieces of data. In the C programming
language, offsets are used even if out of range. This
caused unpredictable results, depending what was accessed.
Character arrays were expanded, including padding for
possible future expansion.

- Unused code was deleted. This included CORTRAN16,
RTRANSA, RTRANSB, NEWLINE, ORIGI, ORIGK, and LOADFACE.

65

- The recognition list (option 3) showed a ranking of all
faces in the data base. As the data base grew, this caused
the top rated faces (the most important ones) to roll out of
view. The recognition list now displays only the top 15
faces.

- Where user input is limited (such as 10 characters for a
name), this limit is enforced.

- Deleting a trained face originully (Lambert) caused the
data to be moved from the training data base to the testing
(o Mers) data base and the video images to be renamed. This
was changed by Sander to truly delete everything associated
with the face. This was restored to the Lambert algorithm.
Also, when images are deleted from the testing (other) data
base, they are now moved to the pixel library.

- Comments have been updated.

- The title displayed on the video screen has been updated
to 1989.

- Spacing and indenting has been improved for readability.
- User messages have been updated and improved.

- When a face was displayed (1.3) the name field was not
changed. If a name was already up there (from ancther
option), it would remain, possibly causing confusion. This
field is now blanked when an image is displayed.

- When a face was displayed (1.3) it was put in the upper
left corner of the screen. It is now displayed centered
about an inch from the top of the screen.

-~ The training option (7) asked for version -1 to exit the
option. But the program only looks at the first character
(not two). This option has been chkanged to look for version
0 to exit.

- Some options did not allow the user to exit if entered
accidentally. This has been corrected where possible.

- The display cf test images (others) showed a list of .IMG
files. This was misleading since it is really a list of
entries in the test (others) data base, which may or may not
match the list of .IMG files. This has be=2n changed.

- Option 1.8 was very similar to option 1.3. Option 1.8 is

now rewritten to load full-screen pixel files to the video
screen.

66

warnings:

The following problems were not corrected and should be
noted:

- Only the first digit of a version number is used by the
program. Version numbers must not exceed 9.

- MNever purge the data base libraries. All of those
versions are needed by the AFRM.

- Never alter the contents nf the data base libraries
without a thorough understanding of effects on the AFRM.
The program assumes that it is doing all manipulations to
this library. User alterations can affect the AFRM.

- The program assumes that the appropriate libraries and
files exizt, as listed in the DEFINE statements at the
beginning of the program.

- FFT and DFT are used interchangeably in both the code and
conments.

- The code is very inconsistent in level of detail. For
instance, for the main menu, svme detailed code is included
instream and some is broken out into subroutines. Also sonme
names are not meaningful (such as MENUl and MENU2). It was
decided not to make major changes in this area, because
those studying the progression of the program over the past
few years would lose the continuity of the program structure
and names used in the program.

67

F‘mgancements :

- The 2DDFT routine used a 128 X 128 array. It was
discovered that nothing larger than 64 X 64 was ever used
(the remainder padded with zeroes). The 2DDFT was changed
to use up to a 64 X 64 array.

- To build the input array to the 2DDFT, every other pixel
in both the horizontal and vertical direction was used. To
better £ill the 64 X 64 array, sometimes every pixel in one
or both direction was used.

- A voting scheme was implemented in subroutine RECOGNIZE.
It is marked by comments so the programmer can choose to use
voting or not.

- A classical Fourier transform can be substituted for the
FFT used by Sander. It is in a separate source file called
FACEFT.C. It can be exchanged for comparable code in
FACEDFT.

68

Appendix C
Software Documentation

69

Table of Contents

Files Usad by FACEDFT

DEFINE References
INCLUDE References ¢« + « « « &
Important Global Variables

High-Level Pseudo-Code
MAIN ¢ ¢ ¢ ¢ ¢ 0 0 s e 0. .
MENUL . . . « ¢ ¢ ¢ ¢ ¢ v v ¢ o .
MENU2 . . .« ¢ ¢ o v o v o v v v
MENU2 . . ¢ ¢ v ¢ v o o v o v &
FACEMAP . . . ¢« ¢« ¢« ¢« s ¢ « o « .
FEATUREMAP . . . + + . &+ ¢« o « « .
GESTALT . . « v o ¢ ¢ 4 ¢« o o o &
SAVE_FFT « ¢« « « o
CLEAR CRAY
FFT2 . . . © e e
FFT e v e e e e e e
BRIGHT NORM
CONT ENHANCE . . . « « « &« « . . .
SCAE e e e e s e e
FACEREC . . . « ¢ v v 4 ¢ ¢« o o« o
RECOGNIZE . v .+ ¢ ¢ ¢ v « o o« o &
ISOLATE . « ¢ & ¢ ¢ v &« ¢ o« & o &
AFRM . . « . . o v 0 e e e .
DEL . . . ¢ ¢ ¢« o « ¢« & o o W
PRTC

cLsS
READFFTFILE . . .
WRITEFFTFILE
DISPLAY

COPYFILE . . L] L] . L] . . L - . : :

FACEFT

70

Page
7
73
73
73

74
74
75
77
78
79
79
80
80
80
80
80
81
81
81
82
83
85
85
86
86
86
86
86
86
86

87

- file containing feature sets for truined faces
pointed o by DEFINE of TRAIN

format is:
integer - number of face entries in file

for each entry (there are 4 entries for each trained

person):
character - name for face (first initial and last
name)
integer - version number

double -6 X5XS5
for each of 6 windows there is a 5§ X 5§
array (gestalt) of features, which is
the 2DDFT (DC and 2 harmonics)

* - EOF marker

- file containing feature sets for test (others) faces
pointed to by DEFINE of OTHERS

format is:
integer - number of face entries in file

for each entry (there is 1 entry for each face test

image):
character - name for face (first initial and last
name)
integer - version number
double -6 X5X5

for @ach of 6 windows there is a 5 X 5§
array (gestalt) of features, which is
the 2DDFT (DC and 2 harmonics)

* - EOF marker

- name.pic;* in DBASEDIR -- trained face images (pixels),
where name is the first initial and last name of the
person; there should be four version for each person

- name.img;* in IMAGEDIR -~ test (others) face images
(pixels), where name is the first initial and last

name of the person

- name.pxl;* in PIXELDIR -- any other face images (pixels)
not matching trained or test faces

71

- orig.img;* -- used to temporxarily save an original face
image

- bnorm.img;* -- used to temporarily save a brightness
normalized face image

72

DEFINE References:

DBASEDIR - library with pixel images used fox training

IMAGEDIR - library with pixel images used for testing
(others)

PIXELDIR - library with other pixel images

TRAIN - file of features for trained faces

OTHERS - file of featured for test (others) faces

These statements are needed to link this program with
standard system routines (I/0, etc.), system math routines,
and ITEX (video processing) routines.

mportant b variab

TLIST - structure list for up to 400 trained face
entries; with 4 entries per face, this is 100
trained faces

- during execution of the AFRM, the TRAIN file
resides in this structure list to speed
execution of the system

I - number of trained face entries in TLIST
ILIST - structure list for up to 100 test face image
entries

- during execution of the AFRM, the OTHERS file
resides in this structure list to speed
execution of the system

K - number of test face image entries in ILIST
THR - brightness threshold
SX,SY, - position and dimensions for face

FX,FY

TRAINED CHANGED - used to determine whether or not TLIST
structure should be written back to the
TRAIN file when application is terminated

OTHERS_CHANGED - used to determine whether or not ILIST

structure should be written back to the
OTHERS file when application is terminated

73

MAIN

initialize system/hardware

display title screen on video screen

call READFFTFILE twice to read trained faces
and test (OTHERS) faces into main memory (TIIST
and ILIST)

initialize TRAIN_CHANGED and OTHERS_CHANGED
flags to false

display and execute MENUl to show and pexform
main menu

74

MENU1 ~ display main menu and execute user's choice:

0:

quit

- if changed, save trained faces and test
faces from main memory (TLIST and ILIST)
back into TRAIN and OTHERS files

- return to operating system

: acquire images

- call MENU2 to give options

find faces

- give user option to sharpen faces
- call SHARPEN if option chosen

- call FACEMAP

: gestalt and identify / save

- call FACEREC

display contents of database

- call DISPLAY with trained faces (TLIST)

- call DISPLAY with test (others) face
images (ILIST)

: delete a2 subject

- call DISPLAY with trained faces (TLIST) to
show user choices
- get subject'!'s name from user
- loop through trained faces (TLIST)
- if subject's name found
- loop through test (others) face images
(ILIST) to find subject's name and
largest version number
- .ncrement that largest version number
- loop 4 times (4 versions), copying
TLIST entries to ILIST as new versions
~ move actual images from DBASEDIR to
IMAGEDIR
- continue to loop through TLIST, moving
the remaining images up 4 places (to
delete subject)
-~ if subject not found in TLIST
- print error message
- et TRAINED_CHANGED and OTHERS_CHANGED
flags

delete an image

- call DISPLAY with test face images (ILIST)
to show user choices

- get subject's name and version number from
user

75

: train

- loop through test face 1mages (ILIST)
- if subject's name and version number
match test face image
- move actual images from IMAGEDIR to
PIXELDIR
- continue to loop through ILIST, moving
each entry up one place (to delete
subject)
- if subject not found in ILIST
- print error message
- set OTHERS_CHANGED flag

- call DISPLAY with trained faces (TLIST) to
show user names of trained people

- call DISPLAY with test face images (ILIST)
to give user choices

- get subject's name from user

- loop through TLIST, looking for subject
name

- if no match, print error message and exit
option

- ask user for 4 version numbers

- loop 4 times (4 versions), verifying
unique version numbers and searching ILIST
to verify existence of image files

- print error messages as appropriate

- loop 4 times (4 versions), copying entries
from ILIST tc TLIST, and getting rid of
ILIST entries by mowving remaining entries
up

- move actual images from IMAGEDIK “o
DBASEDIR

- set TRAINED_CHANGED and OTHERS_CHANGED
flags

demonstration
- call MENU3

change threshold

- allow user to enter new variable threshold
(used by BRIGHT_ NORM)

76

MENU2 - display menu and execute user's choice:

0:

return to main menu

stationary target
- use ITEX routines to put camera image on
video screen

moving target

- use ITEX routines to put camera image on
video screen

- subtract successive images and look for
movement (change)

- use ISOLATE to isolate target from
surroundings

load image from memory

- loads an image file (pixels) of up to
200 X 200
to the screen, centered and near the top

save image
- saves an entire video screen image to an
image (pixel) file in PIXELDIR

set camera port
- allow user to choose camera port 0, 1,
or 2

camera check
- allow user to adjust camera (focus and
such)

re-initialize hardware
- initialize hardware and clear video screen

load face from memory

-~ similar to option 2 except loads a full-
screen image

77

MENU3 - display menu and execute user's choice:

0: return to main menu

1: identify a person

call DISPLAY with test face images (ILIST)
to give user choices

prompt user for person's name and version
number

search ILIST for face entry

display corresponding picture on video
screen

call RECOGNIZE

2: total system

call AFRM

78

FACEMAP - use BRIGHT_NORM to brightness-normalize the
image; then use FEATUREMAP to look for possible
facial features (eyes, nose, mouth), then draw
ellipse and rectangle around features to define
tace, saving bnorm.img and orig.img

FEATUREMAP - look for possible features

79

GESTALT - display windows on video terminal

- set up 6 windows for face

- calculate gestalt, or feature set, for each

window

- use CLEAR_CRAY to initialize calculation
arrays to zero

- put values for windows in calculation arrays

- call FFT2 (2DDFT routine)

- call SAVE_FFT to save Fourier values (DC and
first two harmonics) in ILIST([0] (work space)

SAVE_FFT - save 2DDFT information in ILIST(0] (working
space)

- the feature set for each window for each face
is a 5 X 5 array (DC value and first two
harmonics)

- this data must be copied from the calculation
arrays to ILIST(O0):

0 1 2 3 4
0 crayi crayi crayi crayi crayi
[(02}(02] (01)(02) (00](02) (63)(02) {62](02)
1 crayi crayi crayi crayi crayi
(02)[01] ([01)({0l} ([00]{01] ([(63)(01)} (62](01)}
2 crayi crayi crayr crayr crayr
(02)(00] (01)[00} (00)(00] (00}(01) (00](02]}
3 crayr crayr crayr crayr crayr
(01][62) ([Ol})(63] (01)([00] (O1){OL)} ([01](02)}
4 crayr crayr crayr crayr crayr
(02][62] ([02](63] (02])(00] (02]([01) (02}([02]

CLEAR_CRAY - clears (sets vto zero) the calculation arrays to

be us for the 2DDFT

FFT2 - perform 2DDFT (two-dimensional discrete Fourier
transform) with FFT (fast Fourier transform):
- call FFT for each row
- call FFT for each column

FFT - perform one-dimensional fast Fourier transform

30

BRIGHT NORM ~ brightness-normalize image
{Lambert, 1987:3-15 to 3-21)
- use threshold set with main menu, option 9

CONT_ENHANCE - contrast-enhance image
(Lambert, 1987:3-21, 3-22)

SCALE - rescale image if needed

81

FACEREC

display brightness normalized face (bnorm.ing)
call CONT_ENHANCE (commented out in this
version)
call SCALE (commented out in this version)
call GESTALT to calculate feature set
display original face (orig.img)
1f called from main menu option 3
- ask user whether or not to save face in data
base
- for save,
- ask for subject name
- find highest version number for this name
and increment
~ add face information to ILIST
- save face in name.img file in IMAGEDIR
- set OTHERS_CHANGED flag
- call RECOGNIZE (using ILIST({0])) to try to
recognize face
delete bnorm.img and erig.img

82

RECOGNIZE - attempts to recognize the current image
(rarameter passed which is pointer in ILIST)

- loop through all 6 windows

- loop through all trained people (sets of 4
faces)

gix = the average of this feature for the
4 training entries

gux = the corresponding test feature (can
also be averaged if voting scheme
used)

sum the squares of the difference between
each feature and gix and divide that sum
by 4

sigix = the square root of the value just
calculated

if sigix < 0.5, set it to 0.5
c is the running sum of
(gix - qux)? / 4 * sigix?

- v = %% 4 the window weight
(default 1.0)

Note: The value of the variable ¢ now gives
a measure of closeness for the test feature
set to trained feature sets. This last
equation, giving v, reverses the values so
that a higher score means a closer value
and a lower score means a further value.
This equation also scales values between
zero and one.

- loop through all people
- the recognition distance for each person
against the test image is the sum of the v
values for the six windows. This value is
between zero and one, with the highest
value as the closest to the test image

- sort the recognition distances
- show the three closest faces and print the

names and distance values for the closest 15
faces

83

- if there aren't three faces close enough
(settable value), print message

- Note: windows can be weighted by setting
values (default is all equal)

84

ISOLATE

AFRM

- looks for moving target (changed pixels) on top
half of screen

- for demo, run through entire AFRM process,
using MTI (moving target indicator) and not
saving any images or feature sets

85

DEL ~ delete current image ~ BNORM.IMG and ORIG.INMG

PRTC - prompt user to press return to continue
CLS ~ clear the terminal screen
READFFTFILE - read a feature set file (first parameter) and

WRITEFFTFILE

DISPLAY

}

COPYFILE

load into structure (second parameter)

- first read an integer that gives number of
entries in file

- then loop to read entries and put in
structure

- for each entry there is a name followed by
6 (windows) X 5 X 5 (features) floating
values

- Note* position zero in the stricture is a
work area and is not used by this procedure

~ save feature set file (first parameter),
saving from structure (second parameter)

- reverses read process (described above)

first parameter gives structure (TLIST or
ILIST)

second parameter gives number of entries in
structure third parameter is a flag for TLIST
or ILIST

if TLIST, display names of people found in
TLIST

if YLIST, display names and version numbers for
people found in ILIST

build and execute command to copy one file
1£irst parameter) to another file (second
parameter)

86

FACEFT

FACEFT.C
versions
routines
to use a

is a separate source file. It ccntains alternate
of GFSTALT, SAVE_FFT, CLEAR_CRAY, and FT2. These
can be swapped for the comparable code in FACEDFT.C
classical Fourier transform in place of the FFT.

87

Appendix D
EAGEDET Sourca Liscing

88

7 RRRAARR AR RA LR RN AT AR AR TR TR TR 5T RN RN TR ATt

This is FACEDFT.C

% ¥ X % %

SRR kbbb bk ok sk ok koA ok kst ook stk st or skt et kbiatotnt
Name FACE - AUTONOMOUS FACE RECOGNITION MACHINE

Aucthor: Laurence C. Lambert - 1987
Based on the Data General (Eclipse/Nova) AFPM by E. Smich

% % % % % %

12 JAN 88 L. Lambert
RARRTRRA AR A RAA KA AR AR AR A A A AR AR AR TR AR TR

Modified in 1988 by D. Sander

Major change was to use 2DDFT for feature vectors instead
of moment calculation

% % % % ¥ X%

3

B T e T T 2 T B R BN B B It U SO S s
Modified in 1989 by B. Robb
Major changes were to add choice of a simple (not fast) Fourier

Transform for feature set (see FACEFT.C), averaging of four test
images for recognition, and several clean-up changes

* % X X ¥ % %

FRRR AR RNT R AR KRRk TRk kb kA ddobddddkdkdkdddkdd ik dhkkddkhktdtditdtitit &/

89

zdefine dbasedir "{kabrisky.brobb.dbase)"

#define imagedir "({kabrisky.brobb.dbase]"

xdefine pixeldir "([kabrisky.brobb.dbase)"

uzdefine train "[{kabrisky.brobb.dbase]robbtrain.dac"
#define others "([kabrisky.brobb.dbase]robbothers,dat"

#include "sys$library:stdio,h"
zinclude "duaO:{itil00.itex)stdtyp.h"
ainclude "duaO:([itil00.itex)itex100.h"
zinclude <mach>

static int option,test,sy,sx,fy,fx,nf,x,y,z, chr=0;
inc i,k; /* L = size of tlist, k = size of ilist %/
char train_changed,others_changed;

struct list {
char name(ll];
int num;
double feature{6]{5}{5];
)3
static ctruct list clisc(400) = (0,0);

static struct list {listc[200} = (0,0);
static double gauss({257};

90

AL Bl Rt i bttt 2 sttt 2 e D p s BT B D D L S D TR L IOUS) /

main() /% 23 %/
{

unsigned base = 0x1600;

long mem = 0x200000L;
int flag = 1,block = 8;
sethdw(base,mem, £lag,block);
inicialize();
sclear(100,1);
cls();
printf("\n Initializing hardware and reading dbase files.");
printf("\n Please turn on the video monitor and the camera,"):

text(120,200,0,8,0, "AFRM");
text(110,415,0,1,0," AIR FORCE INSTITUTE OF TECHNOLOGY");
text(110,430,0,1,0," SIGNAL PROCESSING LABORATORY");
text(110,445,0,1,0, "AUTONOMOUS FACE RECOGNITION MACHINE");
text(110,460,0,1,0," 1989");
/% del();*/
{ = readffcfile(train,tlist);
k = readffcfile(others,ilist);
train_changed = ‘£';
others_change” - '£';
Fmsx = y=0;
« fy = 511;
10);

/% ZAWMEARAATREITDHLDEERROHRDRNRER RSN SHDERRRRLERRRDR RN Dbty

menulk() /% 55 %/
{

char t2(80),t3{80),temp[80},ch(80];

inc ver[S] -j !l"m;
int r,w,wl,w2;
int rot(S] = (-20,-10,0,10,20});

foxr(:;) |

cls();

princf("\n
printE("\n
printf(™\n
princf("\n
printf("\n
princf("\n
princE("\n
printf£("\n
princf("\n
princf("\n
princf("\n
princf("\n

0:
1:

VoUW N

scanf("sd",&option);
cls();

suiteh(option){

case 0:

printf("\n\n saving DBASE files..

if (train_changed != '£’)
writeffrfile(train, tlist,i);
if (others_changed != 'f')
writefftfile(others,ilist, k);
cls():
princf("

/* j,1 and m are counters %/

/* ver(l-4) = file version numbers to train cn. */

AUTONOMOUS FACE RECOGNITION MACHINE\n "):

dkkk MAIN MENU sts\n ");
QUIT"):
ACQUIRE IMAGES");

:FIND FACES");

:GESTALT AND IDENTIFY / SAVE");
:DISPLAY CONTENTS OF DATABASE");
+DELETE A SUBJECT");

:DELETE AN IMAGE");

tTRAIN");

:DEMONSTRATION");

: CHANGE THRESHOLD\n\n\n\n\n\n<");

M)

Please turn off the video monitor and the camera.");

princf ("\n\n\n\n\n\n\n\n\n\n\n\n");

return;
case 1:

menu2();

break;

case 2:

printf("\n Sharpen imaga? (Y/N/Quit) >");

scanf("ss",ch);

{f (ch(0] == 'q’ || ch(0] == 'Q’

if (ch[0] == 'y’ || ch[0] == 'Y’
sharpen(sx,sy,fx-sx,fy-sy,3);

)

92

) break;
)

facemap();
break;

case J:
facerec(l);
break;

case 4
display(ctlisc,i,8);
display(ilist,k,5);
pree();
break;

case 5:
display(clist,i,8);
princf("\n\n ‘ dkkkk DELETE SUBJECT wdww");
printf("\n\n Are you sure (Y/N)? >");
scanf("¥s", temp);
Lf (temp{0] != 'Y’ && temp{0] != 'y’') break;
printf("\n\n Enter subject's name. >");
scanf("ss", temp);
princf("\n");

test ~ 0;
for (j=1; j<(i+l); j=i+4) {
if ((strnemp(tlist{j].name,temp,ll)) == 0) {
1 = 0; /% look for highest existing version of .IMG file. %/
for (m=l; m<(k+l);: mi+)
Lf (strncmp(ilist(m).name,temp,ll)~=0 && ilist{m].num>>1)
1=ilist{m].num;
1l =1+ 1; /* add 1 to highest version to get new version. */

for (m=1; m<5; mi+) { /* put 4 new versions into ilist., %/
k=k+1;
ilist(k].name([0] = ‘\O';
strncat(ilist(k].name, temp,1l);
ilist(k].num = 1;
for (w=0; w<6; wi+)
for (wl=0;wl<5;wl+t)
for (w2=0;w2<5;w2++)
ilist[k].feuture(w][wl][w2] =
tlist(j+(m-1)].feature(w] [wl][w2];
L+,
)

1 =1-4;

for (m=0; m<4; m++) |
t2[0] = *\O';
£3(0] = '\O’;
strcat(t2,dbasedir);
strcat(t3, imagedir);
strcat(t2, temp);
strcat(t3, temp);

93

strecat(t2,".pic;\0");
strcac(td,".img:;\0");
ch{l] = '\0';
ch{0] =m + 1L + '0';
strcat(ct2,ch);
ch(0) = L + ‘0*;
strcat(t3,ch);
copyfile(c2,c3);
delece(tl):

)

for (m=j; m<(i-3); m++) tlisc{m] = tlist{m+4];
princf("\n");

L -1 - 4
Jo=- L+ 2 /* forces end of loop through tlisc %/
test = 1; /* indicates that subject was found */

1)

if (test != 1) printf("\n\n Subject not found.");
else |
printf£("\n\n Subject deleted ");
printf("(Moved from training data base");
princf(" to image data base)");
train_changed = ‘t’';
others_changed = 't’;
)
pree();
break;

case 6:
display(ilist,k,6);
printf("\n\n *k%k%x DELETE IMAGE *%k¥&kn).
printf("\n\n Are you sure (Y/N)? >");
scanf("ss",temp);
if (temp(0] !~ 'Y’ && temp[0] != ’'y') break;
printf("\n\n Enter subject's name. >");
scanf("ss", temp);
printf("\n\n Enter version number. >");
scanf("ss",ch);
printf(*\n");

test = 0;
for (j=1; j<(k+l); j++) {)
if (strncmp(ilist(j].name,temp,1l) =~ 0) {(
if (ilist(j].num == (ch(0] - '0")) {

t2{0] = '\0%;
t3{0] = '\O';
strcat(t2,imagedir);
strcat(tl,pixeldir);
strcat(t2,temp);
strcat(t3, temp);
strcat(t2,".img;\0");
strcat(t2,ch):

94

strcat(e3d,".pxI\O");
copyfite(t2,c3);
delete(t?);
for (m=j; m<k; m++) ilisc{m] =~ ilisci{m+l];
k =k -1
J=-k+2;
test = 1;
IRR

Lf (vest != 1) princf("\n\n Image file not found.");
else |
printf("\n\n Image file deleted ");
princf("(Moved from image data base");
printf(" to pixel data base)");
others_changed = 't';
)
pree();
break;

case 7:
display(tlisc,i,8); /% 194 %/
display(ilisc,k,6);
printf("\n\n *hkdkok TRAIN dosoden)«
princf("\n\n Enter person’s name. >");
scanf("is", temp);

test = 0;

for (l=1; l<(itl); Llw=l+4) /* test name %/
if ((strncmp(ctlist{l].name,temp,1l)) == 0) test = l;

if (test == 1) {(
printf("\n That name already exists in the training file.");
pree();
break;

}

for (l=l; l<(k+l); l44)
Lf ((strncmp(ilist(l).name,temp,ll)) == 0) test = 2;
if (test i= 2) {
printf("\n There are no image fiies with that name.");
prec();
break;

}

princf("\n\n You must enter 4 valid (aand unique)");
printf(" file version numbers.");
printf("\n (Enter O (zero) to quit training procedure)");

for (j=1; J<5; j++) |
printf("\n Enter version number for training file # ");
rrincf("sdss”,j,">");
scanf("ss",ch);
ver{j] = ch{0] - ‘0’;

95

if (vex(j]) > 0) (
test -~ 0,
for (l=1; 1<j; l++) {
L€ (vex[l] == ver(j]) {
display(ilise,k,6);
printf("\n\n You already sclected:");
for {m=l; m<j; m++) printf("tsid"," ",ver(m]);
J~3-Ln
test = 1;
1
if (tesc i= 1) {
for (l=l; l<(k+l); L++) {
if (sctrncmp(ilisc{l}.name,cemp,ll) =~ 0
&& ilist{l]).num == ver(j}) |
tast = 1;
1=k + 2;
B
Lf (test -~ 0) |
display(ilisc,k,6);
princf("ss3d","\n\n File version w",ver(j]);
printf(" not found, try another.");
LE (§ 1= 1) |
printf(" (You already selected:");
for (l=1; 1<j; l++) printf("tsyd"," ",ver(l));
princf(")");

)
J=3-L
)

else j =~ 5;
)

if (§ == 6) break;

for (j=L; j<5; j++) |
i -1i+1;
for (1=1; l<(k+l); l++) {(
if (strncmp(ilisc(l).name,temp,ll) == 0
&& ilisc{l].num == ver{j}) {
tlist{i] = {lisc(l);
/* find proper gestalt file in ilisc, */

tlist{i).num = j; /* put in tlist, */
, for (m=l; m<k; m++) flisc(m] = flist{m+l];
ke=k-1; /* delete from ilist, */

})

€2{0] = '\O';

€3(0) = '\O';
strcat(t2.dbasadir);
strcat(t3, imagedir);
strcat(t2,temp);
strcat(t3, temp);
strcat(t2,".pic;\0");

96

streat(e2,". img;\0");
chfl]) = *\0';
ch[0]) = vexr(j) + '0';
strcat(tl,ch);
ch(0) = j + '0';
strcat(t2,ch);
copyfile(t3,c2);
delete(t3);

)

printf£("¥stsys”,"\n\n The training file now contains <", temp,">");
princf("(Moved from image data base)");

train_changed ~ ‘t';

others_changed = 't’;

pree();

break;

case 8:
menul();
break;

case 9:
printf("Enter the new variable threshold >");
scanf("3d",&thr);
break;

default:

break;
)1
)

97

FALL AL EE R LB Dt T e B L LT L Lttt E Lttt L DI R B T L TR TS L S

menu2() /% 287 %/
{

int cam;
char name(80),c1(80),c2(80}),temp(80);

for (i) {
cls();
princf("\n wkkkx ACQUISITION OF IMAGES wintad\np");
princf("\n O:RETURN TO MAIN MENU");
princf("\n L:STATIONARY TARGET");
princf("\n 2:MOVING TARGET");
princf("\n 3:L0AD IMAGE FROM MEMORY");
princf("\n 4:SAVE IMAGE IN DATABASE");
princf("\n 5:SET CAMERA PORT");
princf("\n 6:CAMERA CHECK");
printE("\n 7:RE-INITIALIZE HARDWARE"):
princf("\n 8:LOAD LARGE IMAGE FROM MEMORY");

princf("\n\n\n\n\n\n<");
scanf("3d",&option);
cls();

switch (option) (

case 0:
return:

case 1:
nf = sx = sy - 0;
fx = £y = 511;
getchar();
princf("\n dkkkw STATIONARY TARGET skt) .
princf("\n\n Acquire new image (Y/N)? >");
scanf("ss", temp);
if (cemp{0] == 'Y’ || temp(0] == 'y’) |
grab(0) ;
pree();
stopgrab(l);
)

break;

case 2:
nf = 0; /* this algorithm sets sx,sy,fx,fy to target’'s location */
printf("\n *kkkk MOVING TARGET **ikk\n\a");
getchar();
printf("\n Prepare background image");
princf(" and press RETURN to continue. >");

waitvb(); /* The aclear() is used in this routine to */
grab(0); /* clear the 1lst 16 columns of the image */
getchar(); /* because of an X _SPIN delay of the image.*/
stopgrab(l); /* Therefore the 256x512 image is really */

98

saetreg{X_SPIN,0): S% only a 256x496 image. w/
snap(l):

aclear(0,0,16,765,0);

setreg(SCROLL, 256);

printf("\n\n Prepare subject image"):

printf(" and press RETURN to continue. >");

waievb(): /* Scrolling 256 stores the background image *x/
grab(0); /* off the screen area. Scroll 0 brings it *x/
gotchax(); /* back. I have used the secreg funcction inscead »/
stopgrab(l); /* of scroll because of the problem with defini- %/
secreg(X_SPIN,0); /* tions in che library. (see the comment */
snap{l); /* obtained when linking this program). */

aclear(0,0,16,512,0);
setreg(SCROLL,0);
princf£("\n\n Subtracting images and locacing target.");
oparea(0,256,512,255,0,0,512,255,5,1);
if (Lsolace(20,8,16) =~ 0) (/* Isolate target from surroundings */
printf("\n Could not find targect. Press RETURN to continue. >"):
getchar();
sX = sy = 0;
fx - £y = 511;
break;
)
carea(sx+l,sy+257,fx-sx-1,fy-sy-1,sx+l,sy+l, £x-sx-1,fy-sy-1);
aclear(0,255,512,256,0);
break;

case 3:

princf("\n *ikkk LOAD IMAGE FROM MEMORY k).

princf{"\n\n\n Enter complece file specification.");

printf("\n (filename.ext;version)\n\n >");

scanf("1s", name);

t2{0]) = '\0';

strcat(c2, imagedir);

strcat(t2,name);

printf("ss\n",t2);

princf("\n\n\n Loading file...");

if (readim(200,30,200,200,t2,"nocoma") ~= -1) |{
princf("\n\n\n File not found.");
pree();

)

else text(200,10,0,1,200," \0"):

nf = sx = sy = 0;

fx = fy = 511;

break;

case 4:
tl{0] - '\0';
strcat(tl, imagedir);
printf("\n Will save ***k**ENTIRE****** screen as 8-bit image in
")
printf(" pixel data base.\n\n\n Enter name (including EXT)");
printf("/n (Enter Quit to exit)\n\m>");

99

scanf("is", neme); /* T want to make sure that the DBASE */
Lf(strcmp(naine,"Quit\0") == 0) break;
strncat(tl, name,ll); /% directory is not touched by this save. %/
printf("\n\n\n\n Saving image...");

/* Hence the direccory name {s */
saveim(0,0,511,480,0,cl,"nocomn"); /* not allowed to vary. */
break;

case 5:
printf{"\n Select camera port (0,1 or 2) >");
scanf("sd",&cam);
Lf (cam == 0 || cam == 1 || cam == 2)
seccamera(cam);
break;

case 6:
printf("\n\n *hkkk CAMERA CHECK stokks\n\n"};
grab(0);
pree();
stopgrab(l);
nf = sXx = sy - 0;
fx = fy = 511;
break;

case 7:
inicialize();
nf = sx = sy = 0:
£x = £y = 511; fhkkkktkkbkikkkkkkitboodiokkokobkkobotkkokk koot /
sclear(100); /* using 100 gives a clean screen that {s not too */

break; /* dark to tell whether cthe monitor is on/off */
case 8:
princf("\n *kkkk LOAD IMAGE FROM MEMORY *kkxk").

printf("\n\n\n Enter complete file specification.");

printf("\n (filename.ext;version)\n\n >");

scanf("$s", name);

t2(0) = '\O‘;

strcat(t2,imagedir);

strcat(t2,name);

princtf("ss\n",t2);

printf("\n\n\n Loading file...");

{f (readim(0,0,511,480,t2,"nocomm®) == -1) {
printf("\n\n\n File not found.");
pree();

)

else text(200,10,0,1,200," \0");

nf = s = sy = 0;

fx - fy = 511;

break;
default: /* This is to prevent accidently leaving it on. */
break; Y e

))

100

]

/*************************************'k**************‘k‘k*i************** /

menu3(; /* 602 %/
{

char temp(80),ch{80},c3{80};
fnt version,j:

for (i;) |
cls();
princf("\n *kddk DEMONSTRATION sktd\n");
princf("\n 0:RETURN TO MAIN MENU");
princf("\n 1:IDENTIFY A PERSON");
princf("\n 2:TOTAL SYSTEM\n\n\n\n\n\n\n>");

scanf("3d",&option);
switch (option) (

case 0:
return;

case 1:
display(ilisc,k,6);
princf("\n\n *dkkk IDENTIFY A PERSON ki),
princf("\n\n Enter person’s name (or Quit). >");
scanf("ss", temp);
Lf(strcmp(temp,"Quit\0") == 0) break;
princf("\n\n Encer version number. >");
scanf("4s",ch);
princf("\n");

test = -1;
for (j=1; j<(k+l); j+) |
{f (strnemp(ilist(j).name,temp,ll) == 0) {
i1f (ilist(j).num == (ch{0] - '0')) {
t3[0] = '\O';
strcat(t3,imagedir);
strncat(t3,ilist(j].name,11);
strcat(t3,".img;\0");
strcat(tl,ch);
test = J;
j=k+2;
h
if (test == -1) {
printf("\n\n Image file not found.");
pree();
)
else (
nf = sx = sy = 0;
fx = fy = 511;

101

1)
!

sclear(0,1);
readim(200,30,200,200,t3, "nocomm") ;
text(200,10,0,1,200,temp);

recognize(test);
\

break;
case 2:

afrm():

break;

dofault:
break;

102

/**/
static int pix,avg,diff,neigh, threshold,ne,nn,nm; /% 469 %/
static int col([512};
struct image(
int data(512};
h
struct feat(
int sx,sy,fx,fy,xcenter,ycenter,pix,xsize,ysize,used;
h
struct whole(
int x,y,dx,dy,leye,reye,teye,beye, tnose,cmouth;
int center,xellipse,yellipse,radius;
I
static struct image pic(512),norm{512),cemp{512];
static struct feat eye(l00),nose{100},moucth{100};
static struct whole face(l0};

[tsokinbkbbkkkb kbbb ks sobkorroooobkoootkook /
int facemap() /* 485 x/
{

int 1,§,k,1;
char name{30);

del();

cls();

printf("\n processing image...");
bright_norm();

ne = nn = nm = nf = 0;
featuremap();

for (i=l; i<ne; i++) (
if (eye[i].used == 0) {

for (j=1; j<ne+l; j++) {(/* look for a matching aye */
Lf (eye(j].sx > eye[i]).fx && eye[j].used == 0) { /* try eye(j) */
if (abs(eye(j].pix - eye(i].pix) < eye[j].pix/2) { /* pix numbers */
if (eye{j).ycenter > eye[i].sy && /* okay */
eye{j].ycenter < eye[i].fy) (/* close in height %/

if (eye[j).sx < eye[i].fx+2%eye[i].xsize) { /* near enough */

for (k=1; k<nn+l; k++) { /* look for a nose */

if (nose(k].sy > eye[i]).fy && nose[k].used == 0) {
/* try nose (k] */
if (nose(k].xcenter > eye{i]).sx &&

nosef{k].xcenter < eye(j].£fx) { /* between eyes */

for (1=1; l<nm+l; 1++) { /* look for a mouth */
if (mouth(l].ycenter > nose([k].fy &&

mouth(i].used == 0) { /* below nose */

1f (mouth(l].ycenter < eye(i].fyt+4*eye[i].ysize) {
/* near enough */
if (mouth(l).xcenter > eye[i].sx &&
mouth{l].xcenter < eye[j].£fx) (/* between eyes */
nf = nf+l;
/* all features found and conditions met for a face. */

103

eye{i}.,used - eye[j].used = 1;
nose{k).used = mouth{l).used = 1;
face[nf}.dx = O%(eye(]].xcenter - eye{i].xcenter)/4;
face[nf}.dy = 2%(mouth(l).ycenter - eye(i].sy);
face[nf].x = (eye{]).xcentex+eye{i].xcenter)/2
- face[nf].dx/2;
face(nf].y = mouth(l].ycenter - &*face{nf).dy/S;
face(nf].laye = eye[i].sx - face(nf].x;
face{nf].veye = eye[]).fx - face[nf).x;
face(nf).ceye - (eye(i].sy + eye[j].sy)/2 - face[nf].y;
face[nf].beye ~ (eye[i].fy + eye(j).fy)/2 - face[nf].y;
face(nf].tnose ~ nose(k].sy - fuce[nf].y;
face(nf).cmouth = mouth(l}.ycenter - face(nf}.y:
face[nf).center = face[nf).dx/2;
face(nf].xellipse = face(nf].dx/2 + face(nf].x;
face(nf).yellipse = face(nf).dy/2 + face(nf].y;
face{nf).radius = face[nf}.dx;
circle{face[nf).xellipse,face{nf].yellipse,
face[nf].radius,1,2,255);
rectangle(eye{i}.sx-1,eye(i).sy-1,eye(j].fx - eye[i].sx,
mouth(l}.ycenter - eye{i}.sy,255);
1 =k=j = 500;
AR RRRRRRERRRY

if (nf == 0) recturn(0);

printf("\n Saving brightness normalized faces to disk...");
for (y~0; y<480; y++) whline(0,y,512,norm({y].data);

name(0} = '\0';

strcat(name, "bnorm.img\0");

for (i=l; i<nf+l; i4+) {
printf("\n $stsird" name, ;" ,{);

/* changed 255 to 0 for fill between ellipse and rectangle */
circle(face[i).xellipse, face(i).yellipse,face[i].radius,1,2,255);
rectangle(face[i].x,face(i).y,face[i].dx,face[i].dy,255);
fill(face[i).x+1,face[i]).y+1,50,255);
£il1(face[i)]).x+1,face(i].y+1,0,255);
fill(face(i).x+face[i].dx-1,face(i].y+face(i].dy-1,50,255);
fill(face{i].x+face(1i).dx-1,face{l].y+face{i]).dy-1,0,255);
fill(face(i).x+1,face(1i]).y+face(i].dy-1,50,255);
fi11(face(i]}.x+1,face(i].y+face(i].dy-1,0,255);
fill(face(i].x+face(1].dx-1,face(i].y+1,50,255);
fill(face[i].x+face{1].dx-1,face[i].y+1,0,255);
circle(face{i).xellipse,face{i].yellipse,face(i].radius,1,2,0);
rectangle(face(i).x,face[i]).y,face[i].dx,face(1].dy,0);
saveim(face(i).x,face(i).y,face{i]).dx, face{i].dy,0,name, "nocomm");

)

printf("\n Also saving original faces...");

for (y=0; y<480; y++) whline(0,y,512,temp{y].data);
name{0] = ‘\0';

strzat(name,"orig.img\0");

104

for (i=l; i<nf+l; L++)

princf("\n isistd*, name,";", 1);
vectangle(face(i].x,face{i].y,face[L]).dx,facu{l].dy,255);
saveim(face(1].x, face{l].y,face(l].dx,face(i]).dy,0,name, "ndcomr=);
)

recurn(l);
)

105

7500tk s ok Akl sl e ot o a ksl el sk ok sl ok ok o s s sk v s e sk s s o S Mk vk b ol sk o s o s s ek bk ok ok /

feacuremap() /* 563 %/
{

int £ill,test,ymin,ymax,xmax,i,j,dy,dx,ytesc,xcesc,bx;
chaxr type:

for (ymsy+ld; y<fy-l4; y++) (/% begin and end with 14 pix2l margins %/
tasc =~ 0;
for (x=sx; x<fx-14; x++) { /* see if line is touching top of object */
if (pic{y+l).daca{x] == 0) { /* these checks are done like this */
Lf (pic(y}.dataf{x] == 100) (/* for speed, */
Lf (pic{y).daza{x-l}+pic(y].datafx+l] == 200) {
Lf (picly].data[x-2)+plc(y].data[x+2] =~ 200) {
L€ (pic(y).data(x-3)+pic(y].dataf{x+3]) =~~ 200) {
Lf (picly].daca(x-4)+pic(y;.data[x+h4] == 200) {
if (pic(y).daca{x-5]+pic{y]).dacafx+5) == 200) (

test = 1;
bx = x - 50;
L€ (bx < 14) bx = 14;
X = 512;
NN
Lf (cest == 1) { /* okay, for this line find the object(s) */
for (x=bx; x<498; x++) |
test = 03
type = ‘'u’;
if (pic(y].data(x] == 100) { /* possible corner */
ymax = y + 40;
Lf (ymax>479) ymax = 475,
for (Li=y; i<ymax+l; i++) | /* how far is line white? */
Lf (pic{i).daca(x]) == 0) {
ymax = i - 1;
i~ 512;
1)
Lf (ymax > y+l) {
for (i=y+l; i<ymax; i++) {(
if (pic{i).data[x+l] == 0) { /* something touching line */
dy = i;
test = 1;
i = 512;
1)
if (test == 1) { /* left side ok */
xmax = x + 50;
if (xmax>498) xmax = 498;
for (i=x; i<xmax+l; i++) { /* how far is line white? */
if (pic{y).data(i]) == 0) {(
xmax = i-1;
i = 512;
1
test = 0;

106

if (xmax > x+l) {
for (L=x+l: f<xmax; L++ {
Lf (pilcly+l).daca(i] == 0) {
dx = i
test = 1;
f - 512;
1)

L€ (test == 1) {
test = 0;

/* something touching line %/

/* at the border of unknown object */

while (dx < xmax+tl && dy < ymax+l && test == 0) |

ytest = 0;
while (dy < ymax+l && ytest == 0) (
ytest = 1;
for (fwx; i<dx+l; [++)
Lf (pic(dy].data(i] == Q) ytest =~ 0;
Lf (ytest == 0) dy - dy + 1;
)
Lf (ytestc == 1) |
xtest =~ 0}
while (dx<xmax+l && xtest == 0) {(
Xtest = 1;
for (i=y; i<dy+l; {++)
Lf (pic{i].data[dx] == 0) xtest = 0;
L1f (xtest == 0) dx = dx + 1;
)
Lf (xtest == 1) {
for (Lwx; i<dx+l; 1++)
if (pic{dy].daca(i] == 0) ytest = 0;

Lf (xtest ==~ 1 && ytest == 1) test = 1;

IRRD

if (test == 1) {
if ((dy-y) > 3%(dx-x)) type = ‘t’';
if ((dx-x) < 7) type = ‘'t';

)
Lf (test == 1 && type == ‘u’) {
£ill = 0;

for (jmy+l; j<dy; j++)

/* try to go across to dx %/

/* assume success %/

/* txy to go down to dy %/
/* assume success */

/* failed */

/* recheck present dy */

/* failed */

/* successfully blocked in object */

/* too tall and thin */
/* too small */

for (i=x+l; i<dx; i++) if (pic(j].data[i] == 0) £L{1l++;

LIf (£111 < (dx-x)*(dy-y)*3/10) test = 0;
)
if (test == 1 && type == ‘u’') |{
Lf (dx-x > 2%(dy-y)) |
rectangle(x,y,dx-x,dy-y,0);
type = ‘m’;
nm ~nm+ 1
mouth(nmj.xcenter = (dx+x)/2;
mouth{nm].ycenter = (dy+y)/2;
mouth[nm].sy = y;
mouth[nm].used = 0;

))

107

/* less than 30% solid */

/* possible mouth */

if (test =~ 1 && ctype i~ ‘'t’) |
£i1l ~ O;
ymax = dy+(2%(dy-y)/3):
LE (ymax < 480) {(
for (j=dy+l; j<ymax; j++) /* chk for space below */
for (L=x; i<dx; i++) Lif (pic(j).daca{i]) == 0) ELll++;
L€ (£L11<(ymax -dy+l)*(dx-x)*10/100) {
/* less chan 10% of area filled */
cype = ‘¢’;
ne = ne + 1;
cye(ne).xcenter = (dx+x)/2;
eya{ne].ycenter = (dy+y)/2;
eye(ne].pix = (dx-x) * (dy-y);
eye{ne).xsize - dx - x;
eye[ne).ysize = dy - y;
oye[ne}.sx = x;
eye[ne).£x =~ dx;
eye[ne].sy = y;
eye(ne}.fy = dy;
eye[ne}.,used = 0;
reccangle(x,y,dx-x,dy-y,0); /* (1xl <= size <= 20x20) */
)
£ill - O;
ymin = y-(dy-y);
Lf (ymin > 0) {
for (j=ymin; j<y; j++) /* chk for space above */
for (i=-x; i<dx; L++) if (pic(j).daca(Ll] == 0) £ill++;
Lf (£i11 < (y-ymin)*(dx-x)*10/100) (
/* less than 10% of area filled */
nn = nn + 1;
nose{nn).xcenter =~ (dx+x)/2;
nose(nn).ysize = dy - y;
nose[nn}.fy -~ dy;
nose(nnj.sy = y;
nose(nn}.pix = (dx-x) * (dy-y).
nose[nn}.used = 0;
rectangle(x,y,dx-x,dy-y,0); /* (1xl <= size <= 20x20) */
IRRAR N

return;
)
/* 767 %/

108

JPETRTERER AR LA IR T ok SR 3l S SRt S W A v ook sk s S v St S oSt s sk 7ok /

static double cray(65](65]),cxayc{65](65),crayl(65)(6S),rinp(65);
static int ix,liy;

[wkihtnbninnbinhiobbnohbntbberbbohbbbrstnhbobbshbbt ookt /
gestalc(m) /* Values range from 0 to 128 */

int m: /* m = face number %/
{
int x,v.L.J;

line(256,0,256,512,0)
1ine(0,256,512,256,0):
line(384,0,384,512,0);

1ine(128,256,128,512,0);

/* lefr half: whole head */
carea(sx,sy,face(m).dx/2, face(m].dy,270,sy, face(m].dx/2, face(m).dy);
/* right half: whole head */
carea(sxtface{m].dx/2,sy, face[m].dx/2, face(m].dy,
400,sy, face(m].dx/2, face(m].dy);
/* top half: top to tnose */
carea(sx,sy,face[m].dx, face[m].tnose,15,sy+256,face(m).dx, face(m].tnose)
]
/* internal features */
carea(sx+face{m).leye,sy+face(m}].ceye,face(m].reye-face(m].leye,
face{m].cmouth-face(m].ceye,
140+£ace(m].leye,sy+256+face(m).ceye, face(m]) . reye-face(m). . leye,
face(m].cmouth-face[m].teye);
/* lefr internal features */
carea(sx+face(m].leye,syt+face{m].ceys,face(m].cencer-face(m].leye,
face(m].cmouth-face(m).ceye,
270+face(m].loye,sy+256+face{m].teye, face{m].cencer-face(m].leye,
face[m].cmouth-face(m].teye);
/* bottom half: tnose to chin */
carea(sx,sy+face(m].tnose, face(m].dx,face[m).dy-face[m].tnose,
400,sy+256+face(m].tnose, face(m).dx, face(m).dy-face(m].tnose);

line(sx,sy,sx+face(m].dx,sy,0); /*top*/
line(sx+face[m].dx,sy,sx+face[m].dx,sy+face(m).dy,0); /*rightx/
line(sx+face(m}.dx,sy+face[m].dy,sx,sy+face(m).dy,0); /*bottom*/
line(sx,sy+face(m}.dy,sx,sy,0); /*lefcx/
line(sx,sy+face(m).teye,sx+face(m].dx,sy+face[m].teye,0); /*teyex/
line(sx,sy+face[m].cmouth,sx+face(m].dx,sy+face(m).cmouth,0); /*cmouth*/
line(sx,sy+face{m].tnose,sx+face(m].dx,sy+face{m].tnose,0); /*tnosex/
line(sx+face[m].leye,sy,sx+face(m].leye,sy+face{m].dy,0); /*leyex/
line(sx+face[m).center,sy,sx+face(m].center,sy+face[m).dy,0); /*cencerx/
line(sx+face(m].reye,sy,sx+face(m].reye,sy+face(m).dy,0); /*reyex/

ix - face{m).dx/2;
iy = face[m].dy/2;

printf("\n calculating fft for window 1.");
clear_cray(); /* left half: whole head */

109

for (y=sy: y<sy+facem).dy: y+=2)
for (x=270; x<270+face{m].dx/2; xt=~l) {
crayr{x-269]{1+(y-29)/2] ~ (double) brpixel(x,y)/255;

fEc2(crayr,crayi,66,0);
save_££e(0);

printf("\n calculating £fc for window 2.");
clear_cray(): /% vight half: whole head */
for (y=sy: y<sy+face[m].dy; y+-2)
for (x~400; x<400+face(m].dx/2; x+=l) (
crayx{(x-399)+face(m).dx/4] (L+(y-29)/2] » (double) brpixel(x,y)/255;
)
ffe2(crayr,crayl,64,0);
save_£ffc(l);

printf("\n calculacing £fc for window 3.%);
clear_cray(); /* top half: top to tnose */
for (y~-sy+256; y<sy+256+face{m).cnose; y+=~l)
for (x=15; x<1l5+face(m).dx; x+=2) {
crayr{l+(x-14)/2] (y-285} = (double) brpixel(x,y)/255;

]
ffc2(crayr.crayi,64,0);
save_ffc(2);

printf("\n calculating £ft for window 4.");
clear_cray(); /* internal features %/
for (y~sy+256; y<sy+256+face(m).cmouth; y+=2)
for (x=140; x<l4O+face[m].reye; x+=2) |
crayr({l+(x-139)/2) [1+(y-285)/2] = (double) brpixel(x,y)/255;

)
ffc2(crayr,crayi,64,0);
save_fft(3);

printf("\n calculating fft for window 5.");
clear_cray(); /* left internal features */
for (y=sy+256; y<sy+256+face(m}.cmouth; y+=2)

for (x=270; x<270+face{m].dx/2; x+=1) {

crayr(x-269]{1+(y-285)/2] = (double) brpixel(x,y)/25S;

)
ffc2(crayr,crayi,64,0);
save_ffe(4);

printf("\n calculating fft for window 6.");
clear_cray(); /* bottom half: tnose to chin */
for (y=sy+256; y<sy+256+face[m].dy; y+=l)

for (x-400; x<400+face(m].dx; x+=2) {

crayr(1+(x-399)/2)(y-285) = (double) brpixel(x,y)/255;

)
fft2(crayr,crayi,64,0);
save_fft(5);

return;

}

JAk ootk btk sttt bbbt kol okt stk kool ke /
save_ffc(index)

int index;

{
int x.y:

for (N=0:x<5:x4++)
for (y=0:y<5;y++)

flisc{0]).feazure(index)(x]{y} = 0.0;
for (x=0:x<3ix++)

for (y=-0:y<3;y++)

{1isc[0).feacturefindex]{x+2)(y+2) = crayc(x}{¥]:
for (x=»0;x<2;x++)

for (y-0;y<2;y:+)

flisc{0].feature{indax](x+3]}[y) =~ crayr{x+l}(y+62);
for (x=0;x<Iix++)

for (y~0;y<2:y++)

{lisc(0).feacure{index)(x}(y] = crayi(2-y}{2-x};
ilisc{0].feacure(index)[0)[2]) = crayfi(0}{2];
f1isc{0].feature(index}(1}{2) = crayi(O0](1l);
for (x=0;x<2:x++)

for (y=0:y<2;y++)
flisc(0).feature{index)[l-y){4-x]) = crayi{x+62}[y+l];

return;

)

JFkdekekk ook ok ook koo ok oot ookttt /
clear_cray()

{
int x,y:

for (y~0; y<65; y++)
for (x=0; x<65;: x+) {
cray(x] (y] = 0.0;
crayr(x}(y} = 0.0;
crayiiz](y] = 0.0;

return;

}

111

/RSO R kAR R 4/
ffc2(plce,iplce,n,dir)

double plcc{65){65);
double iplec[65)(65]);
int n;

int dir;

{

double pic{65]);
double ipic{65]):
int L,

for (L =~ 07 £ < n; L+d)
{
for (§J ~ 0: J < n; j++)
{

plefj+l) = plec(i}(y
ipic{j+l) = iplecc(i])
)

ffe(pic,ipic,n,dir);

);
(3):

for (j =~ 0; J < n; j++)
(

plec{i](J) = pic(j+1]);
fpicc(i}(]) =~ ipic(j+1]:
)

)

for (J =~ 0; § < nj J++)
{

for (L = 0; L < nj i++)
{
plc(i+l]) = plee{i])(
fpic{i{+1l] =~ ipicc(i
)
£fe(plic,ipic,n,dir);

3
JIRRE

for (L = 0; % < n; i++)
{
picc(L]}(j) = plc{i+l]);
ipice(1)(J) = iplc(i+l]);
)

)

return,

112

Efe(fr,£i,n,dix)
double £fx(65};
double £i{65]:
int n;

inc ¢ir;

(
double tr~0Q, ti~0;
double wr~0, wi~0;
double ¢l-0, a-0:
{nc {~0, j=0;
int me~0;
fnt 1~0;
fnc k-0;
fnt m~0, nn=0;
int step~0;

{f (dixr < 0)
for (L ~ 1; L < ntl; i++)
£L{L] - -£L{L};
me = 0;
nme-n-1;
for (m = 1; m <= nn; mé+)
{
1 = n/2;
while (1L + mr > nn) 1 ~ 1/2;
mr ~ mrAl + 1;
if {mr > nm)
(
cr = frim+l};
fr{m+l] = fx{me+l];
fr{mr+l} - tr;

tl - fi{m+i);
fi{mél) = £i{me+l);
£i{mr+l]) = cf;
)
)
1=-1;
while (1 < n)
{
step = 2%];
el - 1;
for (m = 1; m <= 1; m#+)
{
a = 3,1415926535 * (double) (l-m)/ el;
wr = cos(a);
wi = sin(a);
for (L = m; L <= n; { += step)
(
j=1+1;
k=1

tr = wrefe(§] - wi®€{{]}]:
el = wer€L{§] + wixfx(§]:
fr{j] =~ fr{k) - cr:
£i(J) = £L(k) - cf;
fr{k] =~ fr{k]) + cu;
fifk] - £L(k] + cf;
)
)
1l « step:
!
Lf (dir < 0)

for i = L; i1 < ntl; i++4)
{
fri{i] = fcf{i)/n;
£i{i) = -£L(L])/n;
i

returs;

/%697 %/

114

b e R s e
bright_norm()

{ /* noxm will contain brightness normalized scene %/
/* (bright areas set to 128, dark areas~ 128-diff x/
int L,§; /* pic will contain the dark objects of the scene */

/* (uses variable cthreshold, binary output) %/
$X = sX - 14,
if (sx < 0) sx » 0;
sy = sy - l4;
if (sy < 0) sy =~ 0;
£x = fx + 14;
LE (£x > 512) £x ~ 512;
LE (Ey > 480) £y =~ 480;
for (y~0; y<480; y++) for (x=0; x<512; x++) norm{y].data(x] = 0;
for (y~0; y<480; y++) rhline(0,y,512,pic[y}.data);
y = syi

for (i-sx; i<fx; i++) |

col(L] = 0; /* setup all columns for first y value */
for (j=y: J<y+#30; j++) col(L) += pic(]j).daca(i};
}

for (y=sy+l; y<fy-30; y++) {(/* now all columns calculated fastexr =*/
for (Limsx; i<fx; L++) col(i] += (pic[y+29).data[i] - pic{y-1l]).data[i});
X = SX;

neigh = 0; /* setup first neighborhood */
for (i=x; 1<x+30; i++) neigh += col(i);

for (xwsx+l; x<fx-30; x++) (/* now all other neigh calculated faster */

neigh += (col(x+29] - col(x-1]);

avg = neigh/900;

pix = pic[y+l4).data[x+14]);

if (pix < avg) norm(y+l4).data{x+l4) = 128 - (avg - pix);
else norm|{y+l4).data[x+14] = 128;
{f (norm(y+l4].data(x+14]) < 0) noxrm[y+l4).data{x+14] = 0;

/* added variable threshold */

threshold = 80*avg/100 + thr; /* add 7 because noise is +/- 7 x/
if (pix < threshold) temp(y+l4].data{x+14) ~ O; /* dark=0 */
else temp(y+14).data(x+l4] = 100; /* else light=10C */
)
for (y=sy+l4; y<fy-1l4; y++) (/* cleanup noise */

for (x=sx+1l4; x<fx~1l4; x++) |
pic(y).data(x) = temp(y).data(x]);
if (temp(y).data{x] == 0) {
if (temp(y].data(x-l]+temp{y].data(x+Ll]+temp(y].data[x+2] > 0) (
pic(y]).data{x] = 100;
1))

for (y=sy+l4; y<fy-1l4; y++) {
for (x=sx+l4; x<fx-14; x++) {

£f (ple(y].daca{x] == 0) {
if (phe(y).data{x-l]+pic{y-1].daca{x]}+pic(y+l].data(x])+

pic(y).daca(x+l] > 200) {
pic(y}.daca{x) = 100;

BB

for (y-fy-14; y>sy+l4; y--) |
for (x=fx-l4; x>sx+lb; x--) {

LE (pic{y).daca(x] == 0) {
L€ (pic(y].daca(x-1)+pic(y-1].data[x}+pic(y+l].daca{x])+

ple(y}.daca(x+l]) > 200) {
pic(y).daca(x] =~ 100;
IARR

for (y-0; y<480; y++) rhline(0,y,512,cemp(y].daca);
for (y-0; y<480; y++) whline(0,y,512,pic(y].daca);

return;
)

116

Jornrnunntnhbbbnhobobohntonhbhbonhobenhone snhoebtben e /
cont_enhance(m)

int m; /* face number */

fnt X,y.2;

static_luts();

satluc(RED,5);

hisceq(RED,S,face(m].leyetsx+l, face[m] .beyetsy,
face[m].dx/2 - 2,face(m).cmouch-face(m}].beye);

mapluc(RED,5,0,0,256,256);

Linluc(RED,5);

linlut(GREEN,5);

Linlut(BLUE,S);

for (y=sy; y<syt+face(m].dy; y++) (/* threshold result %/
for (x~sx; x<sx+face[m).dx; x++) |
z = brpixel(x.y): /* leave dark areas but */
if (z < 50) bwpixel(x,y,z): /* make skin pure whice %/

else bwpixel(x,y,255);
1)

return;

)

117

Y e e e e et)
scale(m)

int m;

int fact;

{f ((fx-sx)/150 > (fy-sy)/150) fact = 150/(fx-sx);
else fact = 150/(fy-sy);
Lf (fact > 1) |
repzoom(sx, sy, £x-sx, £y-sy,sx,sy, 200,200, fact, fact);
face(m].dx = face(m).dx * fact; /* update face[m].lines by ‘'fact’ %/
face{m].dy = face[m].dy * fact;
face[m).leye = face[m].leye * fact;
face(m]).reye =~ face[m).reye * fact;
Face[m).ceye = face[m].ceye * fact;
face(m].beye = face[m].baye * fact;
face(m).tnose -~ face(m}.tnose * fact;
face(m].cmouth ~ face(m).cmouch * facc;
face[m).center = face[m].center * fact;
fx = (£x-sx)*fact + sx; /* update fx,fy by ‘rfact' */
fy = (fy-sy)*fact + sy;
)

aclear(0,0,512,sy,255);
aclear(0,£y,512,480-£y,255);
aclear(f,sy-1,sx,fy-sy+l,255);
aclear(fx,sy-1,512-fx,fy-sy+1,255);

return;

)

118

[l Aoniobobtobostboroessntinneibenahnssmes /
facerac(version)

int version;

{
char ch{80],t2(30),c3(80),c4(30),c5(80);
fnc 1,j,w,wl,w2,1,m,n,p,dx,dy;

Lf (nf 1= 0) {
cls():
princf(" ctrying to recognize faces found...");
for (m=l; m<nf+l; mi+) |
t2(0} = '\0'; : /* create file names for face » m %/
ca{0] = '\O';
strcat(t2,"bnorm. img;\0");
strcat(t4, "orig,img;\0");
c3{0} = m + '0';
t3{l]) -~ '\O0';
strcac(t2,cd);
strecat(tsd,cl);
sx = 60;
sy = 30;
printf("\n ts",c2);
sclear(0,1);

readim(sx, sy, 200,200,t2, "nocomn"); /* display bright _norm face */
1 = sy;

while(brpixel(sx,1l) != 0) l++; /* get £x,fy values */
fy = 1 - 1;

1L = sx;

while(brpixel(l,sy) != 0) L++;

fx -1 - 1;

dx = fx - sx;

dy = fy - sy;

/* cont_enhance(m);
scale(m); */
text(70,10,0,1,0,t2);

gestalt(m); /* gestalt values put in ilisc{[0) */
inicialize();
sclear(0,1);
readim(200,30,200,200, t4, "nocomm™); /* display original face */

text(200,10,0,1,200,t4);
{f (version == 1) (
printf("\n Save in dbase? (Y/N) >");
scanf("ss",ch);)
if (ch[0] == '3 || ch[0] == 'Y*) {
printf("\n encer name of subject (up to 10 letters) \m>");
scanf("ys",t3):
p~0; /* highest existing version # for this subject */
for (n=1; n<k+l: n++) |
if (strnecmp(ilist{n).name,t3,11l) == 0) (
p = ilist{n).num;
)

119

)
k=k+1;
p=p+l
flist(k).name{0] = '\O';
strncat(ilisc{k).name,t3, 11);
ilisc(k].num = p;
for (w=0; w<6; wt)
for (wl=0; wl<5; wl++)
for (w2=0; w2<5; w2++)
flisc(k].feature(w]{wl]){w2] = {lisc{0].feacure(w][wl]([w2];
others_changed - 't’;
t5(0] = '\0';
strcat(t5, imagedir);
strncac(cS,ilisc{k].name,11);
strcat(e5,",img;\0");
saveim(200,30,200,200,0,¢5, "nocomm");
)
)
alse |
if (m < nf) {
printf{"\n Forget about rest of ");
printf(“faces and return to main menu? (Y/N) >"):
scanf("ys",ei);
Lf (ch[0] == 'y* |] ch[0] == 'Y') {
return;
}
)
)
recognize(0); /* pass in gestalt values of {lisc{0] %/
delete(t2);
delete(td);
cls();
1
else {
printf("\n face not found.");
pree();
)
nf = sx = sy = 0;
fx = fy = 511;
return;

120

/R R AR AR TR RO EROE IR R TR SRR R R e et e

static inc resulesl({257)(5]):

static int lisc[l0l); /* list of ides ordered by distances in list2 %/

static double t{1l0l),list2{101); /* votal distances (for all windows) %/

static double v{1l01}(7}; /* v{id}[w] =~ discance from person =id to
unknown person for window »w (Russel, 1985:4-402) */

[kttt ootk ot stk ok bbionkonkottttk /
recognize(num) /*from REMID.FR 06/03/86 by R. Russal */

int num; /* the posicion {n ilist() of gestalt values to use. ¥/

{
char c8({80];
double gix,gux,sigix,c,most;
int id,w,x,y.m,n,j,confid, tesc;
double p(7} - (1.0,1.0,1.0,1.0,1.0,%.0,6.0); /* window performance factors
(update after training and ctescing with sufficient samples %/
/* note: p{0] is used for total of factors %/

princf£("\n\n\n Now trying to recognize subject in top half of screen.\n");
princf("\n Presently trained with td subjects.", (1/4));

for (w=0; w<6; wi+) |
for (id=l; id<(i/4)+1; id++) |
m = {d*4 - 3;
c=0;
for (x~0; x<5 ; x+#)
for (y=0; y<5; y++) |
gix = ((double) (tlist{m].feature(w](x][y] +
tlist{m+l].feature(w][x])(y] +
tlisc(m+2].feature(w]{x]}(y] +
tlist(m+3], feature(w](x])(y]))/4.0);
gux = (double) ilist{num).feature{w]{x](y);

/*
VOTING SCHEME
Voting can be done on four consecutive test feature sets
(consecutive is {list). Substitute this assign statement
for the variable gux.
gux = ((double) (ilist(num].feature(w]([x](y] +
ilist(num+l) . feature{w] (x](y]
ilist(num+2).featurve(w][x](y]
ilist{num+3].feature(w][x](y]))/4.0);
*/

sigix = ((double) (abs(gix-tlist{m].feature(w]([x][y])*
abs(gix-tlist[m).feature{w][x]{y])+

121

abs(gix-clist{m+l]. feavure{w}{x]{y])*
abs(gix-clisc{m+l), Eeacura(w]{x]{y])+
abs(gix-tlisc{m+2}.feature(w}(x}(y])*
abs(gix-clisc{m+2} . featurefw) (x]){y})+
abs(gix-clisc{m+d]).feature(w](x]{y])*
abs(gix-clisc{m+3].feature(w](x](y])))/4.0;

sigix =~ sqre(sigix);

L€ (sigix < .5) sigix = .5;

¢ 4= (glx-gux)*(gix-gux)/(4*sigixtsigix);

l
!

v(1d]){w] = exp(-1.0%c/10000) * p(w};

)
]

for (id=l; i1d<(i/4)+1; fd++) |
e{id] =~ 0.000000001;
for (w=~0; w<6; wi+) {
t{id] += v[id]([w];
)
cfid) =~ c(id}/p(6];
/*max t{id] = 1.0 vhen distance from id to unknown*/
} /* individual = 0.0 */
/* princf("\nSorting Distances $2d",i); */

/* now have all discances ordered by id#, need to order idss by dist */
for (m=l: m<lOl; m#+) |

lisc[(m) = O;

lisc2{m) = 0.000000001;
)
for (m=l; m<((i/4)+1) && m<l6; mi+) |

most = 0.000000001;

for (j=l; J<(1/6)+1; j+8) |

Lf (c{j] > most) {
most = t(j];

no=j;
)
)
list(m] = n; /* id # */
1ist2[(m] = t{n]; /* distance */

t(n] = 0.000000001;
)

/* now have ordered list of candidates, need to display them */
test = 0;
if (lisc2(1] > 0.001) {
printf("\n\n Candidate Distance");
/* printf(" Confidence"); */
for (m=l; m<((i/4)+l) && m<l6; m++) (

122

Lf (lise2{m] > 0.001) 1{
LE (m == 1) {
princf("\n lst Choice: ");
e8(0] = *\0';
strcat(c8 dbasedir);
strcac(c8,clisc{lisc(lj*s - 3] .name);
strcat(e8,".pic\0");
readim(50,286,200,200,t8, "nocomm™);
text(50,266,0,1,200,clisc{lisc{l]*s - 3).name);
test = 1;

{f (m = 2; !
printf("\n 2nd Chaice: *);
£8{0] ~ '\0';
stxcac(c8,dbasedir);
strcat(e8,clisc{lisc(2]* - 3].name);
strcat(cd,".pic\0");
readim(200,286,200,200,c8, "nocamm®™)
text(200,266,0,1,200,clisc{lisc{2)*4 - 3).name);
test = 2;

Lf (m == 3) {
prinecf("\n 3rd Choice: ");
t8(0) = '\0';
strcat(t8,dbasedir);
strcat(t8, clisc(lisc{3])*4 - 3).name);
strcat(t8,".pic\0");
readim(350,286,200,200,t8, "nocomm™);
text(350,266,0,1,200,clisef{lisc[3}*4 - 3).name);
test = J;
)
{f (m == 4) printf("\n Others: ");
L€ (m > 4) printf("\n LN
/* confid = based on distance of this candidate and
distances to next candidates */
printf("slls s, elisc{list{m]}*4 - 3).name,list2{m]);
/* printf(" sd",confid) ;*/
}
else m=200;
)
)
if (test == 0) {
printf("\n\n Could not find any close enough candidates.");
printf("\n The computer has never sean this person before.");
)
if (test < 3 && test I= 0) [
printf("\n\n Could not find any more close enough candidates so");
if (test == 1) printf("\n only displayed 1 picture.");
else printf("\n only displayed 2 pictures.");
)
pree();
return;

}

/'k******‘k*****'k**************i**********’k*********'k*****ﬁ****iMi*ﬁ*** /

int isolate(thresh,mode,size) /* works on top half of screen only! %/
inc thresh; /* cthreshold for decccclon'of target %/
{nt mode; /* 6 bic or 8 bit {maga »/
{nc size; /* determines minimum size of vargect and affects speed. %/

{ /* size is elcher 16 or 32 pixels. %/
lnc x|Yo=;

sX = sy = £x = £y = -L; /% Find top. kbkbbbbbbobbbobbbinbbbsht: %/

for (y-siza-1; y <= 255 y=y+size)(/* This subroutine finds locacion ¥/

for (% = 0; x < 511; x~-xtsize)(/* of a moving object. If there is%/
= « brpixel(x,y): /* no moving object, or it is too %/
Lf (mode »= 6) z - z & 63; /* small chen (0) is returned. If %/
L€ (= >= thresh) { /* an object is found then sx,sy, %/
sy = y-(size-1); /% £x,fy sra set and (1) is re- %/
x = 512; /* cturned, This {s done so that ¥/
y = 312; /* all future work done on a scenex/

1R R
/* is done on a greatly reduced */
Lf (sy w= -1) return(0); /* area of the scene and hence is */
for (y=256-size; y>(sy+size-1): y=y-size)(
/* done faster. Thresh ls set to¥/
for (x = 0; x <= 511; x~xtsize)(/* high enough value to eliminate %/

z = brpixel(x,y); /* video noise bur low enough to =/
Lf (mode == 6) z = z & 63; /* find small brightness differen-*/
if (= >= thresh)(/* ces that may occur between a */
£y = y + size-1; /* Find bottom. * moving object and its bkgnd. %/
x = 512: [k ok ookl ookt /
y=-L

M

Lf (£y < (sy + size)) return(0);
for (x-=size-l; x <= 511; x=x+size){ /* £ind left side %/
for (y = 0; y < 255; y~=y+size)(

z = brpixel(x,y);

if (mode == 6) z = z & 63;

if (z >= thresh){

sx = X - (size-1);

X = y = 512;
)

if (sx == -1) return(0);
for (x = S512-size; x > (sx + size-1); x = x - size)(
for (y = 0; y < 255; y =y + size)(/* find right side */
z = brpixel(x,y):
if (mode == 6) z = z & 63;
if (z >= thresh){
fx = x + size-1;

124

:(q-l:
y = 312
IR R

{f (€x < (sx + size)) recturn(0);

recurn(l);
]

/'hht\hi*Qsl'k'k'k*’hhk**\hb*-hhhhhl'ii**i*ﬁ*\\'*ﬁi‘k‘ki***iiﬂ*‘ki*i****i*i***i**é**x& /

adefine A0 (short inc)al(l)
mdefine a0(f) (i & Ox003f)
sdefine Al (shorc Inc)al(i)

adefine al(l) £{(i & 0x0£c0) >> 6)
mdafine DOCL) | daca & OxffcO; daca |= (i & 0x003f); |

/% These are the transformacions used in %/
/% the feadback lut for the real cime v/
/* subcraction demo. This sofeware was ¥/

/* created by using the toolbox %/
/* program (see FG-100 usex's v/

/* manual chapc 7) »/

wde€ine DL(L) | data &= Ox£O3E; daga |= ((i << 6) & 0x0£c0); | /hwkwkwiu/

rdafine INPUT 0x6000

wdefine abs(i) ((C(L) < 0) 7 (-(L)) : (1))

xform\{addx, initial)
unsigned addr,initial;
{

raegister unsigned short
register short {nt data
DLl(AL);

D0(abs(Al - 20));
recurn{(unsigned)data);
)

xform2(addr, initial)
unsigned addr,initial;
{

register unsigned short
register short int data
D1(A0);

DO(abs(Al - A0));
return{(unsigned)data);

)

f = addr;
- {nicial;

i =~ addr:
= inicial;

125

/**#ﬁi*ﬁQﬁﬁﬁ***ﬁﬁ****ﬁ*****&**ﬁ#k*ﬁ**ﬁ*ti&ii*********ﬁ***ﬁﬁﬁ****ﬁiﬁiﬁ3/

afrm() /* A conpletely Autoncaous Face Recngnition Machina (AFRM) %/
{

int cam;
char gtop,answer(l];
register unsigned j;

stop =~ 'n';

cam ~ 9

while (cam != 0 4% cam I» 1 && cam I= 2) {
priacf("\n Seiecc camera port (0,1 oxr 2) >);
scanf("ud™ &cam) ;
}

while (stop ==~ 'n') |{

cls();

printf (" please wafe,..");

resuberacc(0);

seccameracan) !

secluc(0,0):

secinmux(6);

for (j-0; j<0x1000; j++) wricte Lluc(INPUT,j,xform2(),read lut(INPUT,})));
cls();

princf(" looking for targec.");

snap(l);

snap(l);

while((isolace(8,6,32)) !~ 1) snap(i);

printf("\n found target, acquiring 8 bit image.");
inicialize();

setcamera(cam);

waicvb();

snap(l);

nf = sx = sy = 0;

fx = S511;

fy = 255; /* prasently isolate() only looks for rarget in top */
Lf (facemap() = 1) {(/* half so look for faces in top half %/

printf("\n found ");

princf("sd" ,nf);

L{f (nf == 1) printf(" face.");

else printf(" faces.");

facerec(2);

)

printf("\n Do you wish to stop? (Y/N) >");
scanf("ts",answer);

1f (answer{0} == ‘Y’ || answer(0] == 'y’) stop = 'y’;
)

return,

)

126

/BRSO R O RS R AR AR RRRRRR 02
del()
(

princf("\n\n Delecing files with reserved names.");
system("delete bnorm.imgi*");

/* chese names are raserved for facefindex */
system("delete orig.imgi*“);
raturn;
}

Fibbtinbnetborobokbnbot ek nebibbbot bbbtk /
pree() J* 455 %)
{

princf("\n\n Prass RETURN to continue, >"):

getchar();

getchar():

regurn;

}

[kl koot ootk ok ek okor koo /
cls{)

{

princf(“\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
princf("\n\n\n\n\n\n\n\n\n\n\n\n\e\n\n\n\n");

return;

}

127

/*****************'k**********'k*i********'k*\h’t**************************#/

int readffefile(name,sty)
char name(};
strucc list sex(]);

{
char ¢,inscring{10};
FILE *£p;
fnc h,i,J.k,L,x:
double y:

fp = fopen(name,"x");
fscanf(fp,"1d",&h);
for (L=1;i<h+l;i+t) |
Escanf(fp,”"810s" ,&insctring);
for (j=0;j<10;j++)t
str(i).name(j)~inscring(j];
)
str(i].name{j]) = *'\0O';
fscanf(fp,"2d" ,&x);
str{i].num = X;

for (j=0;j<6;j++)
for (k=0;k<5;k+t){
for (1=-0;1<5;1++) |
fscanf(fp,"sE",&y);
str{i).feature(j) (k) (1] = y;
)
)
)
fclose(£p);
returnth);
)

128

Vsaielallalablishbobbeb it b L L L S E PR L R e By
writeffefile(name,scr,) /* used to write updated DAT files to disk */
char name(] /% when user {s done modifying the database and selects %/

struct list scx{}; /* menu option = 0 (Return to main manu). */
inc §; /b ook Rty

{
FILE *fp,*fopen();
int j,k,l,m;

delece(name);
fp ~ fopen(name,"w");
fprincf(£fp,"1d\n", L),
for (j=l; j<(i+l); j++) {
fprincf(fp, "%4-10s35d \n", scr(j).name, str(j).num);
for (k=0;k<6;:kt+)
for (1=0;1<5;14++) {(
for (m=0;m<5;m++)
fprincf(fp, "$3.3f “, scr(j).feature(k](1)(m]);
fprintf(£fp,"\n");
)
)
fprintf(fp, "“*");
fclose(£fp);
return;

}

129

/****‘k*‘k*'k**'.hk***********‘k**’k***********'k*********i:k*************ﬂ‘*****/

display(stx.k,m) /* m = 6 or 8 depending on » columns desired L74
struct list ser{]; /* m =~ 6 for ilist displays, 8 for tlist displays %/
int k,m; /* L = present column being printed on screen %/
{ /* j counts by 1 or 4 depending on value of m %/
int j,l,n; /* this is due to format of tlisc file; there are */
1 = 0; /* sets of & lines all wich the same name and the %/
LE (m == 6) /* name only needs to be printed once. %/
printf("\n\n The AFRM has the following image feature sets:\n");
printf(" sseeaccnsmmacanerceccanactoainana. \n");
)
else |
printf(" The AFRM is ctrained on the following subjects:\n");
prinCf(" «----eeescencciimorscntomonsant et \n");
)
Lf (m==8) n = 4;
else n = 1;
for (j=l; j<(k+l); j=j+n) {
1 =~1+1;
{€ (L == m) {
1 = 1;

printf("\n");
)

{f (m == 6) princf("sllsystd",scr(j).name, ",", str(j].num);
else princf("slls",scr(j}.name);

}
raturn;

)

130

/SRR RSk R SRRk S ss ASR R Tek /
copyfile(src,dest)

char src(],destc{]);

char t9(80};

c9{0}) - '\0';
strcat(t9,"copy \0");
streat(c9,sxc);
strecac(e9,* \0");
strcat(c9,dest);
princf("\n s",t9);
systam(t9);

return;

)

/**‘.\'*** */

131

Appendix E
FACEFT

132

[kR R R stk kAR RTINSk Rt R ST et

This is FACEFT.C

This is a subset of FACEDFT chat is concerned with
the Fourier Transform used for the feacure set,

These roucines use a standard cwo- dimensional
Fourier Transform, but calculace only the dc component
and che first two harmonics.

% X X X X A K X X *

£ R RRN AR AR onk bkt bbbk d ik bobokbk bbbk bbbkttt ot /

133

/***********kﬁ**ﬁ**ﬁ***ﬁ***********ﬁ***ﬁ********ﬁﬁ************&***ﬁ**ﬂ?/

static double crayr({200](200],sinaxay{5){3],cosaray[{5])(3].cinpl65};
static int ix,iy:

/*******************%*************************w************************/

gestalc(m) /* Values range from 0 to 128 =*/
int m; /* m = face number %/
{

int x,y.L.§;

1ine(256,0,256,512,0);
1ine(0,256,512,256,0);
1line(384,0,384,512,0);
line(128,256,128,512,0);

/* lefr half: whole head */
carea(sx,sy, face(m].dx/2,face(m].dy,270,sy,face[m).dx/2, face(m].dy);
/% right half: whole head */
carea(sx+face(m).dx/2,sy,face(m].dx/2,face(m].dy,

400,sy, face[m].dx/2, face(m].dy);
/* top half: top to tnose */
carea(sx,sy,face(m).dx,face{m].tnose,15,sy+256, face({m).dx, face[m].tnose)

/* internal features */
carea(sx+face(m).leye,sy+face[m].teye, face(m).reye-face(m].leys,
face([m; .cmouth-face{m],eye,
l40+face(m].leye,sy+256+face(m}.ceye, face[m].xraye-face(m].leye,
face[m).cmouth-face(m}.teye);

/* left internal features */
carea(sx+face(m].leye,sy+face(m].teye,face{m]. .center-face{m].leye,
face[m] .cmouth-face(m).teye,
270+face(m].leye,sy+256+face(m).teye,face(m].center-face(m].leye,
face(m] .cmouth-face(m].teye);
/* bottom half: tnose to chin */
carea(sx,sy+face(m).tnose,face[m].dx,£~ce(m].dy-face(m].cnose,
400,sy+256+face(m].tnose,face(m] .ux, face(m).dy-face[m].tnose);

line(sx,sy,sx+face[m].dx,sy,0); /*copx/
line(sx+face(m].dx,sy,sx+face(m].dx,sy+face(m].dy,0); /*rightx/
line(sx+face(m].dx,sy+face(m].dy,sx,sy+face(m).dy,0); /*bottom*/
line{sx,sy+face(m].dy,sx,sy,0); /*lefrx/
line(sx,sy+face[m].teye,sx+face(m].dx,sy+face[m].teye,0); /*teyex/
line(sx,sy+face({m}.cmouth, sx+face[m).dx,sy+face(m].cmouth,0); /*cmouth*/
line(sx,sy+face(m].tnose,sx+face(m].dx,sy+face[m].tnose,0); /*tnosex/
line(sx+face(m).leye,sy,sx+face(m].leye,sy+face{m].dy,0); /*leyex/
line(sx+face[m).center,sy,sx+face[m).center,sy+face(m].dy,0); /*center*/
line(sx+face[m].reye,sy,sx+face[m].reye,sy+face{m].dy,0); /*reyex/

ix = face[m).dx/2;
iy = face{m].dy/2;

printf£("\n calculating f£ft for window 1.");
clear_cray(); /* left half: whole head */
for (y=sy; y<sy+face[m].dy; y+=2)

for (x=270; x<270+face{m].dx/2; x+=2) |
crayr((x-269)/2)[(y-29)/2]) ~ (douhle) brpixel(x,y)/255;

)
fc2(crayr, 1+(x~269)/2,1+{y-29)/2);
save_££c(0);

printf("\n calculacing £ft for window 2.%):
claax_cray(): /* right half: whole head %/
for (y=sy; y<sytface(m].dy: y+=2)
for (x-400; x<400+face{m).dx/2; x+=2) {
crayr((x-399)/2}{(y-29)/2} ~ (double) brpixel(x,y)/255;

}
fc2({crayr, 1+(x-399)/2,1+(y-29)/2);
save_£fc(l):

princf("\n calculacing ££ft for window 3.");
cleax_cray(); /* top half: top to tnose -,
for (y=sy+256; y<sy+256+face(m).tnose; y+=2)
for (x=15; x<15+face{m].dx; x+=2) {(
crayr{(x-14)/2){(y-285)/2} =~ (double) brpixel(x,y)/255;

}
fc2(crayr, L+(x-14) /2, 1+(y-285)/2);
save_££ft(2);

princf("\n calculating ffr for window 4.");
clear_cray(); /* internal features %/
for (y=-sy+256; y<sy+256+face{m}.cmouth; y+=2)

for (x=140; x<l40+face{m).reye; x+=2) {

crayr{(x-139)/2)((y-285)/2] = (double) brpixel(x,y)/255;

)
fe2(crayr,1+(x-139)/2,1+(y-285)/2);
save_fft(3);

princf("\n calculating fft for window 5.");
clear_cray(); /* left internal features %/
for (y=sy+256; y<sy+256+face(m}.cmouth; y+=2)

for (x=270; x<270+face(m}).dx/2; x+=2) {

crayr((x-269)/2}((y-285)/2) = (double) brpixel(x,y)/255;

)
fe2(crayr,1+(x-269)/2,1+(y-285)/2);
save_fft(4);

princf("\n calculating fft for window 6.");
clear_cray(); /* bottom half: tnose to chin */
for (y=sy+256; y<sy+256+face(m].dy; y+=2)
for (x=400; x<400+face[m].dx; x+=2) (
crayr((x-399)/2)[(y-285)/2] = (double) brpixel(x,y)/255;

)
ft2(crayr, 1+(x-399)/2,1+(y-285)/2);
save_fft(5);

return;
}

135

/**/
save_ffc(index)
int index;

int X,¥:

{lisc{0]).
.fearure(index] (0} {1} =
.feature{index] (0] (2} =
flisc(0]).
ilisc({0]}.
ilisc(0].
f1isc(0]).
flisc(0).
flisc(0].

11ist(0)
{1ist{0)

{1isc{0]

]
flisc{0]}.)
ilisc(0].]
flisc{0].)
.feature(index}(2}(3)

]

)

]

]

flisc(0]

ilisc(0]).
ilisc(0].
flisc{0].
ilisc(0].
flist(0].
{1isc(O0]}.
flisc(o},
ilisc(0].
ilisc(0}.
{lisc{0].
ilisc(O0]).

return;

}

0
1
2
3
.feature(index}{1]}{4
0
1
2

feature{index} (0]} {0} ~

feature(indexj{0}(3] =
feature(index]){0][4)
feavture[index](1}(V0)
feature(index){1)(1}
feature{index} (1} {2}
feature{index](1}{3!}
feature(index](2]{
feature(index][2}{
feacture(index](2](

feature[index][2](4
feature[index){3](0
feature(index](3])(1
feature{index}(3](2
feature{{ndex](3](3)
feature(index]}{3][4]
feature(index]} (4] (0]
feature{index] (4] [1]
feature[index){4] (2]
feature(index](4](3]
feature{index][4]{4)

f 11 1 s BB SOLY BN OYOED SN

sinaray{0)(0]);
sinaray(0}(1):
sinaray(0])(2]);
cosaray(0](1};
cosaray(0)({2};
sinaray(1](0};
sinaray(l)(1]};
sinaray(l)(2];
cosaray(l)(1};
cosaray(1}(2]);
sinaray[2]){0};
sinaray(2}(1);
cosaray(2](0]);
cosaray(2](1);
cosaray(2}(2};
sinaray(3](0);
sinaray{3])(1);
cosaray{3])(0]);
cosaray{3](1);
cosaray{3}(2);
sinaray(4]){0};
sinaray(4}(1};
cosaray(4](0);
cosaray(4])(1};
cosaray(4](2];

/**/
clear_cray()

(

int x,y:

for (y=0; y<200; y++)
for (x=0; x<200; x++)
crayr(x](y] = 0.0;

return;

)

136

e e e e e e o [—

P e T PR R S
£c2(raray, fex, fry)

double raray{200}(200};

{
int i.j .k.l.xnjﬂ

for (k=0; k<5; ki+) |
for (l=0; 1<3; L++) |

cosaray{k}(l]} ~ 0.0;

sinaray(k}{1l) =~ 0.0;

for (i=0; i<feox; i++) |

for (j=0: j<fry; j++)

cosavay(k][1] +~ ravay{i](J]) * cos(-i¥(k-2)*2%pi/fux-j¥(L-2)*2%pi/fry):
sinavay{k) (1) +~ ravay(L}(J] * sin(-i¥(k-2)*2%pi/fux-j*(L-2)*2%pl/fcy):

)
)

recurn;
!

/*‘k***********H**********\hb\"k***/

wy

137

Biblioaraphy

Bush, Larry F. The Desiqn of an Optjmum Alphanumeric Symbol
§_§_§g;_§gg§p;§_ﬂ;§glg!§ MS Thesis AFIT/GE/ENG/77-11.
School of Engineering, Air Force Institute of Technology
(AU) , Wright-Patterson AFB OH, December 1977
(AD-2053447).

Darnell, Peter A. and Phillip E. Margolis. Software
gnglnggzlng_;n_g New York: Springer-Verlag, 1988.

Fretheim, Erik J. Computer Program. Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, Summer 1988.

Fretheim, Erik J. Personal Interview. Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, May 1989.

Gonzalez, Rafael C. and Paul Wintz. Diqgital Signal
Processing. Reading MA: Addison-Wesley Publishing
Company, 1977.

Kabrisky, Matthew, Director Signal Processing Laboratory.
Personal Interview. Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, July 1989.

Kernighan, Brian W. and P. J. Plauger.

The Elements of
Programming Style (Second Edition). New York: McGraw
Hill Book Company, 1978.

Lambert, Larry C. \
. MS Thesis
AFIT/GE/ENG/87D-35. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1987 (AD-A188819).

O'Hair, Mark A. Whole Word Recoqnition Based on Low Freq
Fourjer cComplex and Amplitude Spectra, MS Thesis
AFIT/GEO/ENG/84D~4. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1984.

O'Hair, Mark A. Computer Program. Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, August 1989.

Pressman, Roger S. oftw ineering: actitioner's

Approach (Second Edition). New York: McGraw-Hill Book
Company, 1982.

138

Routh, Richard L. cortical Thought Theory: A Working Model
of the Human Gestalt Mechanism, Ph.D. Dissertation
AFIT/DS/EE/85-1. Air Force Institute of Technology (aU),
Wright-Patterson AFB OH, July 1985 (AD-Al163215).

Russel, Robert L. Jr. W in a
Recognition Machine Using Cortical Thought Theorv,

MS Thesis AFIT/GE/ENG/85D-37. School of Engineering,
Alr Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1985 (AD-Al67781).

Sander, David D. Enbanced Autopnomous Face Recognjtion
Machine, MS Thésis AFIT/GCS/ENG/88D-19. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1988 (AD-B128376L).

Smith, Edward J. Development of an Autonomous Face
itio ine, MS Thesis AFIT/GE/ENG/86D-36.
School of ENgineering, Air Force Institute of Technology
(AU) , Wright-Patterson AFB OH, December 1986
(AD-A178852).

Wahl, Friedrich M. Digital Image Signal Processing. Boston:
Artech House, 1987. .

139

Captain Barbara C. Robb

She attended the Illinois Institute of
Technology and receivgd the degree of Bachelér of Science in
Computer Science in May 1975. She worked as a civilian in
the computer field for seven years. She was commissioned in
June 1983 after attending Officer Training School. She then
attended the Air Force Institute of Technology as part of
the conversion program, receiving the degree of Bachelor of
Science in Electrical Engineering in March 1985. Next, she
served as a Project Officer for the Secretary of the Air
Force Special Projects at Los Angeles AFB California until
entering the School of Engineering, Air Force Institute of

Technology in May 1988.

140

UNCLASSIFIED
URITY CLASSIFICATION HIS PA

LY

REPORT DOCUMENTATION PAGE

Form Approved
OMB No, 0704-0188

12, REPORT SECURITY CLASSIFICATION
SSIFrIEn

1b, RESTRICTIVE MARKINGS

2a, SECURITY CLASSIFICATION AUTHORITY

3, DISTRIBUTION/AVAILABILITY OF

2d, DECLASSIFICATION / DOWNGRADING SCHEDULE

REPORT

Approved for public release;
distribution unlimited

4, PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

63, NAME QOF PERFORMING QRGANIZATION

School of Engineering AFIT/EN

6b, OFFICE SYMBGCL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State, and ZiP Code)

Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

7b. ADDRESS (City, State, and ZIP Code)

83, NAME OF FUNDING /SPONSORING

CRGANIZATION (if applicabie)

8b. OFFICE SYMBOL

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZiP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO. NO,

WORK UNIT
ACCESSION NO.

TASK
NO.

11, TITLE (include Security Classification)

AUTONOMOUS FACE RECOGNITION MACHINE USING A FOURIER FEATURE SET

12. PERSONAL AUTHOR(S)

Barbara C. Robb, B.S., Capt, USAF
13a, TYPE OF REPORT 13b, TIME COVERED 14, DATE OF REPORT (Year, Moath, Day)]15. PAGE COUNT
MS Thesis EROM 10 1989 December 148

16. SUPPLEMENTARY NOTATION

17, COSAT! CODES
FIELD GROUP SUS-GROUP
12 09,01
06 04

Pattern Recognition
Discrete Fourier Transforms

18. SUBJECT TERMS (Ceitinue on mverse if necessary and identify by block number)

Face
Face Recognition

Thesis Advisor:

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Matthew Kabrisky, PhD
Professor of Electrical Engineering

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
KJUNCLASSIFIEDANLIMITED [SAME AS RPT.

[oTIC USERS

UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL

2e .

21, ABSTRACT SECURITY CLASSIFICATION

22b. TELEPHONE (Include Area Code)
(813} 2885-92K7

22c. OFFICE SYMBOL
AFTT/ENG

DD Form 1473, JUN 86

Previous editions are obsolate,

SECURITY CLASSIFICATION OF THIS PAGE

_UNCLASSIFIED

UHCLASSI D

This thesis demonstrates ourier coeéficients as a reliable
feature set for face recognition, using the Autonomous Face
Recognition Machine developed at AFIT over the past several
years (Routh, 1985; Russel, 1985; Smith, 1986; Lambert, 1987;
Sander, 1988). .

The Fourier transform portion of the system was examined

and improved. The code was made more efficient. Two Fourier

Fourier transform) were tested and compared. A voting scheme
was incorporated for examinihg multiple looks at test faces.
To further demonstrate performance, the number of faces in the
data base was doubled.

Recognition scores of up to 87% were achieved, compared to
63% for Sander's process with Fourier coefficients as a
feature set and 67% for Lambert's process with a center-of-
mass feature set. (Sander, 1988:32).

This thesis includes complete system documentation, to

assist those doing further research in this area.

UNCLASSIFIED

